论文标题

mgard+:优化遇到错误的科学数据减少的多级方法

MGARD+: Optimizing Multilevel Methods for Error-bounded Scientific Data Reduction

论文作者

Liang, Xin, Whitney, Ben, Chen, Jieyang, Wan, Lipeng, Liu, Qing, Tao, Dingwen, Kress, James, Pugmire, Dave, Wolf, Matthew, Podhorszki, Norbert, Klasky, Scott

论文摘要

在处理大规模科学模拟和工具产生的大量数据时,数据管理变得越来越重要。现有的多级压缩算法提供了一种大规模管理科学数据的有前途的方法,但性能和降低质量可能相对较低。在本文中,我们提出了MGARD+,这是在以前的多级方法上绘制多级数据缩小和重构框架,以实现高性能数据分解和高质量的错误遇到的有损压缩。我们的贡献是四倍:1)我们提出了一种水平的系数量化方法,该方法使用不同的误差公差来量化多级系数。 2)我们提出了一种自适应分解方法,该方法将多级分解作为预处理,并在适当的级别终止分解过程。 3)我们利用一组算法优化策略来显着提高多级分解/重构的性能。 4)我们使用四个现实世界的科学数据集评估了我们提出的方法,并与几个最先进的有损压缩机进行比较。实验表明,我们的优化提高了现有多级方法的分解/重组性能,而与其他最新的错误遇到的误差损耗压缩机相比,提出的压缩方法可以提高压缩比最高2倍。

Data management is becoming increasingly important in dealing with the large amounts of data produced by large-scale scientific simulations and instruments. Existing multilevel compression algorithms offer a promising way to manage scientific data at scale, but may suffer from relatively low performance and reduction quality. In this paper, we propose MGARD+, a multilevel data reduction and refactoring framework drawing on previous multilevel methods, to achieve high-performance data decomposition and high-quality error-bounded lossy compression. Our contributions are four-fold: 1) We propose a level-wise coefficient quantization method, which uses different error tolerances to quantize the multilevel coefficients. 2) We propose an adaptive decomposition method which treats the multilevel decomposition as a preconditioner and terminates the decomposition process at an appropriate level. 3) We leverage a set of algorithmic optimization strategies to significantly improve the performance of multilevel decomposition/recomposition. 4) We evaluate our proposed method using four real-world scientific datasets and compare with several state-of-the-art lossy compressors. Experiments demonstrate that our optimizations improve the decomposition/recomposition performance of the existing multilevel method by up to 70X, and the proposed compression method can improve compression ratio by up to 2X compared with other state-of-the-art error-bounded lossy compressors under the same level of data distortion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源