论文标题

在最佳设计上使用拓扑优化用于流过多孔媒体应用的流程

On optimal designs using topology optimization for flow through porous media applications

论文作者

Phatak, T., Nakshatrala, K. B.

论文摘要

拓扑优化(TOPOPT)是一个数学驱动的设计程序,可实现最佳的材料体系结构。此过程通常用于自动化涉及流过多孔介质(例如微富集设备)的设备的设计。 TOPOPT提供材料布局,可通过多孔材料来控制流体的流动,从而提供所需的功能。该应用领域的许多先前研究都使用Darcy方程进行原始分析和最小功率定理(MPT)来驱动优化问题。但是,这两个选择(Darcy方程式和MPT)都是限制性的,对于现代设备的一般工作条件无效。简单且线性的Darcy方程通常用于通过多孔培养基模拟流体流动。但是,达西模型的两个固有假设是:流体的粘度是一个常数,惯性效应可以忽略不计。有无可辩驳的实验证据表明,流体,尤其是有机液体的粘度取决于压力。鉴于典型的小孔径,惯性作用在微富富设备中占主导地位。接下来,MPT不是一般原则,对于放宽Darcy模型假设的(非线性)模型无效。本文旨在通过提出使用TOPOPT的一般策略来克服上述缺陷。首先,我们将考虑考虑到压力依赖性粘度和惯性效应的非线性模型,并研究这些非线性对TOPOPT下最佳材料布局的影响。其次,我们将探索机械耗散的速率,即使对于非线性模型,也是目标函数的替代方案。第三,我们将针对规范问题提供最佳设计的分析解决方案。这些解决方案不仅具有研究和教学价值,而且还促进了计算机实施的验证。

Topology optimization (TopOpt) is a mathematical-driven design procedure to realize optimal material architectures. This procedure is often used to automate the design of devices involving flow through porous media, such as micro-fluidic devices. TopOpt offers material layouts that control the flow of fluids through porous materials, providing desired functionalities. Many prior studies in this application area have used Darcy equations for primal analysis and the minimum power theorem (MPT) to drive the optimization problem. But both these choices (Darcy equations and MPT) are restrictive and not valid for general working conditions of modern devices. Being simple and linear, Darcy equations are often used to model flow of fluids through porous media. However, two inherent assumptions of the Darcy model are: the viscosity of a fluid is a constant, and inertial effects are negligible. There is irrefutable experimental evidence that viscosity of a fluid, especially organic liquids, depends on the pressure. Given the typical small pore-sizes, inertial effects are dominant in micro-fluidic devices. Next, MPT is not a general principle and is not valid for (nonlinear) models that relax the assumptions of the Darcy model. This paper aims to overcome the mentioned deficiencies by presenting a general strategy for using TopOpt. First, we will consider nonlinear models that take into account the pressure-dependent viscosity and inertial effects, and study the effect of these nonlinearities on the optimal material layouts under TopOpt. Second, we will explore the rate of mechanical dissipation, valid even for nonlinear models, as an alternative for the objective function. Third, we will present analytical solutions of optimal designs for canonical problems; these solutions not only possess research and pedagogical values but also facilitate verification of computer implementations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源