论文标题
一种无模型测试关联的方法
A Model-free Approach for Testing Association
论文作者
论文摘要
结果与特征之间的关联问题通常是在功能和分布形式的模型的背景下构成的。我们激励的应用是鉴定血管生成,能量代谢,凋亡和炎症的血清生物标志物,这可以预测淋巴结(肿瘤)肿瘤肺癌T2A或更少的淋巴结非小细胞肺癌患者的肺切除后复发。我们提出了一种用于测试关联方法的综合方法,该方法没有关于功能形式和分布的假设,可以用作黑匣子方法。该提出的最大置换测试基于阈值的概念,很容易实现,并且在计算上是有效的。我们说明,所提出的综合测试保持其水平,并具有强大的功率,即使使用线性,非线性和基于分数的关联,即使使用异常易行和重尾错误分布,并且在非参数设置下,也具有强大的功率。我们还说明了这种方法在无模型特征筛选中的使用,并进一步检查了这些测试的二进制结果的水平和功能。我们将提出的综合测试的性能与我们激励应用中的比较方法进行比较,以鉴定早期患者中与非小细胞肺癌复发相关的术前血清生物标志物。
The question of association between outcome and feature is generally framed in the context of a model on functional and distributional forms. Our motivating application is that of identifying serum biomarkers of angiogenesis, energy metabolism, apoptosis, and inflammation, predictive of recurrence after lung resection in node-negative non-small cell lung cancer patients with tumor stage T2a or less. We propose an omnibus approach for testing association that is free of assumptions on functional forms and distributions and can be used as a black box method. This proposed maximal permutation test is based on the idea of thresholding, is readily implementable and is computationally efficient. We illustrate that the proposed omnibus tests maintain their levels and have strong power as black box tests for detecting linear, nonlinear and quantile-based associations, even with outlier-prone and heavy-tailed error distributions and under nonparametric setting. We additionally illustrate the use of this approach in model-free feature screening and further examine the level and power of these tests for binary outcome. We compare the performance of the proposed omnibus tests with comparator methods in our motivating application to identify preoperative serum biomarkers associated with non-small cell lung cancer recurrence in early stage patients.