论文标题

符号动力学中的Anosov-katok方法和伪旋转

The Anosov-Katok method and pseudo-rotations in symplectic dynamics

论文作者

Roux, Frédéric Le, Seyfaddini, Sobhan

论文摘要

我们证明,复曲面的符号歧管允许使用有限的汉密尔顿伪旋转,从某种意义上说,千古量的数量很少。这些伪旋转的一组千古量度包括由符号体积形式引起的度量以及在圆环动作固定点上支持的狄拉克度量。我们的构建依赖于Anosov和Katok的共轭方法。

We prove that toric symplectic manifolds admit Hamiltonian pseudo-rotations with a finite, and in a sense minimal, number of ergodic measures. The set of ergodic measures of these pseudo-rotations consists of the measure induced by the symplectic volume form and the Dirac measures supported at the fixed points of the torus action. Our construction relies on the conjugation method of Anosov and Katok.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源