论文标题
在触中重力中,稳定且自洽的紧凑型星模型
Stable and self-consistent compact star models in teleparallel gravity
论文作者
论文摘要
在远程引力的框架中,我们为物理对称的四型场提供了一个带电的非vacuum溶液,具有两个未知的径向坐标函数。场方程导致封闭形式采用特定的度量势,并具有合适的各向异性函数与电荷结合。在这种情况下,可以获得与观察到的脉冲星兼容的一组构型。具体而言,内部时空的边界条件应用于外部reissner-nordström公制,以限制必须通过边界消失的径向压力。从这些注意事项开始,我们能够修复模型参数。 Pulsar $ \ textIt {PSR J 1614--2230} $,估计质量$ M = 1.97 \ pm 0.04 \,M _ {\ CircledCirc},$和RADIUS $ r = 9.69 \ 9.69 \ pm 0.2 $ 0.2 $ km用于数字测试模型。通过因果关系和绝热指数研究了稳定性,采用了Tolman-Oppenheimer-Volkov方程。 Mass-Radius $(M,R)$关系得出。此外,还研究了该模型与其他观察到的脉冲星的兼容性。我们合理地得出结论,该模型可以代表现实的紧凑对象。
In the framework of Teleparallel Gravity, we derive a charged non-vacuum solution for a physically symmetric tetrad field with two unknown functions of radial coordinate. The field equations result in a closed-form adopting particular metric potentials and a suitable anisotropy function combined with the charge. Under these circumstances, it is possible to obtain a set of configurations compatible with observed pulsars. Specifically, boundary conditions for the interior spacetime are applied to the exterior Reissner-Nordström metric to constrain the radial pressure that has to vanish through the boundary. Starting from these considerations, we are able to fix the model parameters. The pulsar $\textit {PSR J 1614--2230}$, with estimated mass $M= 1.97 \pm 0.04\, M_{\circledcirc},$ and radius $R= 9.69 \pm 0.2$ km is used to test numerically the model. The stability is studied, through the causality conditions and adiabatic index, adopting the Tolman-Oppenheimer-Volkov equation. The mass-radius $(M,R)$ relation is derived. Furthermore, the compatibility of the model with other observed pulsars is also studied. We reasonably conclude that the model can represent realistic compact objects.