论文标题

在常规图上,其补语

On regular graphs equienergetic with their complements

论文作者

Podestá, Ricardo A., Videla, Denis E.

论文摘要

我们在常规图$γ$(有或没有循环的)的参数上提供了必要的条件,使得$ e(γ)= e(\ edimenlineγ)$。我们研究了具有单个环(5个非镜面对)连接的立方图的同构和连接的无环的积分立方图($γ= k_3 \ k_3 \ square k_2 $或$ q_3 $)的互补分类图的互补分类图。然后,我们证明,为了补充,唯一的双分部分均值图形和非镜头及其补充是冠状图$ cr(n)$或$ c_4 $。接下来,对于强烈规则图$γ$的家族,我们表征所有可能的参数$ srg(n,k,e,d)$,使得$ e(γ)= e(\ overlineγ)$。此外,使用此功能,我们证明,当它是会议图,或者它是伪拉丁方形图(即具有$ oa $ parameters)时,我们就证明了强烈规则的图表与其补充相等。我们还表征了类型$ \ MATHCAL {C}(2)$,$ \ MATHCAL {C}(3)$和$ \ MATHCAL {C}(5)$在Cameron's HierArchy中(情况$ \ MATHCAL {C}(c}(1)$ nys $ nys $ nys $ nys $,最后,我们考虑戒指上的统一Cayley图$ g_r = x(r,r^*)$。我们表明,如果$ r $是具有偶数局部因素的有限artinian戒指,那么$ g_r $是且仅当$ r = \ mathbb {f} _q \ times \ times \ times \ times \ mathbb {f} _ {q'} $的产品是2个有限的领域的产物。

We give necessary and sufficient conditions on the parameters of a regular graph $Γ$ (with or without loops) such that $E(Γ)=E(\overline Γ)$. We study complementary equienergetic cubic graphs obtaining classifications up to isomorphisms for connected cubic graphs with single loops (5 non-isospectral pairs) and connected integral cubic graphs without loops ($Γ= K_3 \square K_2$ or $Q_3$). Then we show that, up to complements, the only bipartite regular graphs equienergetic and non-isospectral with their complements are the crown graphs $Cr(n)$ or $C_4$. Next, for the family of strongly regular graphs $Γ$ we characterize all possible parameters $srg(n,k,e,d)$ such that $E(Γ) = E(\overline Γ)$. Furthermore, using this, we prove that a strongly regular graph is equienergetic to its complement if and only if it is either a conference graph or else it is a pseudo Latin square graph (i.e. has $OA$ parameters). We also characterize all complementary equienergetic pairs of graphs of type $\mathcal{C}(2)$, $\mathcal{C}(3)$ and $\mathcal{C}(5)$ in Cameron's hierarchy (the cases $\mathcal{C}(1)$ and $\mathcal{C}(4)$ are still open). Finally, we consider unitary Cayley graphs over rings $G_R=X(R,R^*)$. We show that if $R$ is a finite Artinian ring with an even number of local factors, then $G_R$ is complementary equienergetic if and only if $R=\mathbb{F}_q \times \mathbb{F}_{q'}$ is the product of 2 finite fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源