论文标题
通过int扩大的内态表征复曲面品种
Characterization of toric varieties via int-amplified endomorphisms
论文作者
论文摘要
在本文中,我们通过插入的内态性获得了感谢您的特征。我们证明,如果$ f \ colon x \ to x $是一个平滑复杂的投影型品种$ x $的内态性的内态,那么$ x $是折磨的,并且仅当$ f_*l $是每个行$ l $的$ x $的直接捆绑包。
In this paper, we obtain a characterization of toric varieties via int-amplified endomorphisms. We prove that if $f \colon X \to X$ is an int-amplified endomorphism of a smooth complex projective variety $X$, then $X$ is toric if and only if $f_*L$ is a direct sum of line bundles on $X$ for every line bundle $L$.