论文标题
访问带有激子polaritons的Kardar-Parisi-Zhang通用子类
Accessing Kardar-Parisi-Zhang universality sub-classes with exciton polaritons
论文作者
论文摘要
预计在驱动驱动性条件下的激子 - 果态凝结物被预计属于Kardar-Parisi-Zhang(KPZ)通用类,这是凝结液相的动力学,其方程与长距离的经典随机界面相同。我们表明,通过对一维极性子进行外部限制,我们可以访问两个不同的通用子类,这些子类与界面的平坦或弯曲的几何形状相关。我们的凝聚态相分布和相关性的结果与KPZ的确切理论结果相匹配:一分统计的Tracy-Widom分布(GOE和GUE),以及两点统计的通风过程的协方差(Airy1和Airy2)。这项研究促进了激烈的 - 果态系统,作为研究KPZ通用性能的引人注目的平台。
Exciton-polariton condensates under driven-dissipative conditions are predicted to belong to the Kardar-Parisi-Zhang (KPZ) universality class, the dynamics of the condensate phase satisfying the same equation as for classical stochastic interface growth at long distance. We show that by engineering an external confinement for one-dimensional polaritons we can access two different universality sub-classes, which are associated to the flat or curved geometry for the interface. Our results for the condensate phase distribution and correlations match with great accuracy with the exact theoretical results for KPZ: the Tracy-Widom distributions (GOE and GUE) for the one-point statistics, and covariance of Airy processes (Airy1 and Airy2) for the two-point statistics. This study promotes the exciton-polariton system as a compelling platform to investigate KPZ universal properties.