论文标题
视频游戏水平维修通过混合整数线性编程
Video Game Level Repair via Mixed Integer Linear Programming
论文作者
论文摘要
通过机器学习,程序内容生成的最新进展使视频游戏级别的产生在美学上与人为实现的示例相似。但是,生成的水平通常是无法播放的,而无需额外编辑。我们提出了一个生成的重复框架,以自动生成遵循特定样式的可玩级别。该框架使用经过人为实现的示例训练的生成对抗网络(GAN)构建级别,并使用具有可玩性约束的混合组合线性程序(MIP)进行维修。该框架的一个关键组成部分是计算GAN生成的水平与MIP求解器的解决方案之间的最低成本编辑,我们将其作为最低成本网络流量问题进行。结果表明,所提出的框架会产生各种可玩水平,从而捕获了人为构成级别中的对象之间的空间关系。
Recent advancements in procedural content generation via machine learning enable the generation of video-game levels that are aesthetically similar to human-authored examples. However, the generated levels are often unplayable without additional editing. We propose a generate-then-repair framework for automatic generation of playable levels adhering to specific styles. The framework constructs levels using a generative adversarial network (GAN) trained with human-authored examples and repairs them using a mixed-integer linear program (MIP) with playability constraints. A key component of the framework is computing minimum cost edits between the GAN generated level and the solution of the MIP solver, which we cast as a minimum cost network flow problem. Results show that the proposed framework generates a diverse range of playable levels, that capture the spatial relationships between objects exhibited in the human-authored levels.