论文标题

高度和算术动力学在有限生成的字段上

Heights and arithmetic dynamics over finitely generated fields

论文作者

Carney, Alexander

论文摘要

我们开发了相对于有限生成的扩展K/K的矢量值高度和交叉点的理论。这些概括了数字字段和几何高度。当k是Q或f_p,或者当非丧失性条件保持时,我们将获得Northcott-Type结果。然后,我们证明了用于矢量值相交的Hodge索引定理的一个版本,并使用它证明了任何字段上极性动力学系统的刚度定理。

We develop a theory of vector-valued heights and intersections defined relative to finitely generated extensions K/k. These generalize both number field and geometric heights. When k is Q or F_p, or when a non-isotriviality condition holds, we obtain Northcott-type results. We then prove a version of the Hodge Index Theorem for vector-valued intersections, and use it to prove a rigidity theorem for polarized dynamical systems over any field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源