论文标题

重力辐射中的新结构

New Structures in Gravitational Radiation

论文作者

Bieri, Lydia

论文摘要

我们研究了爱因斯坦真空方程以及描述中微子辐射的爱因斯坦无效的流体方程。我们在引力波和记忆中发现了新的结构,用于缓慢衰减的渐近空位。这些结构不会在紧凑型集合外静止的数据产生的空间中产生。相反,更一般的情况表现出更丰富的几何分析相互作用,显示了这些更通用系统的物理。众所周知,由于更强的数据引力波记忆是有限的,并且仅是电平性的。我们研究了一般的空间,这些空间在粗略的意义上是渐近平坦的,在这种情况下,数据对Minkowski空间的衰减非常慢。主要新功能:我们证明,在爱因斯坦真空中的曲率张量(a)以及(b)在爱因斯坦 - 纳尔 - 富流体方程中存在的磁性部分存在不同的磁记忆。磁记忆自然发生在纯重力的爱因斯坦真空设置(a)中。在(b)的情况下,在最终的溶液类别中,磁性记忆还包含来自中微子的能量弹药张量的卷曲项,也以最高速率发散。电气内存也有分歧,它是由曲率张量的电部分以及在爱因斯坦无液体的情况下生成的,也是由相应的能量弹药组件产生的。此外,我们在这些歧管中找到了更精细的结构的全景。其中一些表现为对电气和磁记忆的额外贡献。只要满足数据缓慢衰减,我们的定理适用于与爱因斯坦方程相连的任何类型的物质或能量。新的结果有许多应用,从数学一般相对论到引力波天体物理学,检测到物理学中的暗物质和其他主题。

We investigate the Einstein vacuum equations as well as the Einstein-null fluid equations describing neutrino radiation. We find new structures in gravitational waves and memory for asymptotically-flat spacetimes of slow decay. These structures do not arise in spacetimes resulting from data that is stationary outside a compact set. Rather the more general situations exhibit richer geometric-analytic interactions displaying the physics of these more general systems. It has been known that for stronger decay of the data gravitational wave memory is finite and of electric parity only. We investigate general spacetimes that are asymptotically flat in a rough sense, where the decay of the data to Minkowski space towards infinity is very slow. Main new feature: We prove that there exists diverging magnetic memory sourced by the magnetic part of the curvature tensor (a) in the Einstein vacuum and (b) in the Einstein-null-fluid equations. The magnetic memory occurs naturally in the Einstein vacuum setting (a) of pure gravity. In case (b), in the ultimate class of solutions, the magnetic memory also contains a curl term from the energy-momentum tensor for neutrinos also diverging at the highest rate. The electric memory diverges too, it is generated by the electric part of the curvature tensor and in the Einstein-null-fluid situation also by the corresponding energy-momentum component. In addition, we find a panorama of finer structures in these manifolds. Some of these manifest themselves as additional contributions to both electric and magnetic memory. Our theorems hold for any type of matter or energy coupled to the Einstein equations as long as the data decays slowly towards infinity and other conditions are satisfied. The new results have many applications ranging from mathematical general relativity to gravitational wave astrophysics, detecting dark matter and other topics in physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源