论文标题

因果推断在受到赞助搜索广告的干扰的情况下

Causal Inference in the Presence of Interference in Sponsored Search Advertising

论文作者

Nabi, Razieh, Pfeiffer, Joel, Bayir, Murat Ali, Charles, Denis, Kıcıman, Emre

论文摘要

在经典的因果推理中,从数据推断出原因效应关系取决于单位是独立且分布相同的假设。在单位通过依赖网络相关的设置中违反了此假设。这种设置的一个示例是在赞助搜索广告中放置广告,其中特定广告的可命中性可能会受到放置位置以及将其他广告放置在搜索结果页面上的位置。在这种情况下,不仅是由于单个广告级协变量,而且是系统中其他广告的位置和协变量而引起的混淆。在本文中,我们利用了在干扰存在的情况下的因果推论的语言来模拟广告之间的相互作用。量化此类交互作用使我们能够更好地了解用户的点击行为,从而影响主机搜索引擎的收入并增强用户满意度。我们通过在Bing搜索引擎的广告放置系统上进行的实验来说明形式化的实用性。

In classical causal inference, inferring cause-effect relations from data relies on the assumption that units are independent and identically distributed. This assumption is violated in settings where units are related through a network of dependencies. An example of such a setting is ad placement in sponsored search advertising, where the clickability of a particular ad is potentially influenced by where it is placed and where other ads are placed on the search result page. In such scenarios, confounding arises due to not only the individual ad-level covariates but also the placements and covariates of other ads in the system. In this paper, we leverage the language of causal inference in the presence of interference to model interactions among the ads. Quantification of such interactions allows us to better understand the click behavior of users, which in turn impacts the revenue of the host search engine and enhances user satisfaction. We illustrate the utility of our formalization through experiments carried out on the ad placement system of the Bing search engine.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源