论文标题

张量场理论:重新归一化和随机几何形状

Tensor Field Theories: Renormalization and Random Geometry

论文作者

Delporte, Nicolas

论文摘要

本文的重点是量子场理论的重新归一化。它的第一部分考虑了三个维度的三个张量模型,这是一种张量为3和5的张量,张量为3和5。对于第一个模型,即在$ u(n)^3 $下不变的模型,我们从具有可对角矩阵中间场的重新印度获得了两个旋速耦合和真空相图的RG流。离散的手性对称性自发断裂,我们与三维总螺旋模型进行比较。除了无质量的$ u(n)^3 $对称阶段之外,我们还观察到同一对称性的巨大阶段,而对称性则分为$ u(n^2)\ times u(n/2)\ times u(n/2)$。还研究了$ u(n)\ times u(n^2)$下的矩阵模型不变式,并研究了具有近距离属性的$。对于其他型号,具有对称组$ u(n)^3 $和$ o(n)^5 $,一种非胶合耦合(“车轮”),其最佳缩放$ n $驱动我们驱动我们进行广泛的旋速扩张。动力学术语是简短和长时间的,我们在扰动上大致分析六耦合的RG流量最多四个循环。只有等级3模型显示非平凡的固定点(在短距离情况下有两个真正的Wilson-Fisher,另一个是固定点的线)。我们最终获得了初级双线性操作员的实际保形尺寸。在第二部分中,我们为关键的Galton-Watson树上的四分之一标量场(具有远距离的动力学术语)建立了扰动的多尺度重新归一化的结果。迫在眉睫的是,紧急的无限脊柱提供了有效尺寸的空间$ 4/3 $,以计算平均相关性fonctions。这种方法将QFT在随机几何形状上的概念形式化。我们在详细回顾的随机图上使用已知的概率界限。

This thesis focuses on renormalization of quantum field theories. Its first part considers three tensor models in three dimensions, a Fermionic quartic with tensors of rank-3 and two Bosonic sextic, of ranks 3 and 5. We rely upon the large-$N$ melonic expansion of tensor models. For the first model, invariant under $U(N)^3$, we obtain the RG flow of the two melonic couplings and the vacuum phase diagram, from a reformulation with a diagonalizable matrix intermediate field. The discrete chiral symmetry breaks spontaneously and we compare with the three-dimensional Gross-Neveu model. Beyond the massless $U(N)^3$ symmetric phase, we also observe a massive phase of same symmetry and another where the symmetry breaks into $U(N^2)\times U(N/2)\times U(N/2)$. A matrix model invariant under $U(N)\times U(N^2)$, with close properties, is also studied. For the other models, with symmetry groups $U(N)^3$ and $O(N)^5$, a non-melonic coupling (the "wheel") with an optimal scaling in $N$ drives us to a generalized melonic expansion. The kinetic terms are taken of short- and long-range, and we analyze perturbatively, at large-$N$, the RG flows of the sextic couplings up to four loops. Only the rank-3 model displays non-trivial fixed points (two real Wilson-Fisher-like in the short-range case and a line of fixed points in the other). We finally obtain the real conformal dimensions of the primary bilinear operators. In the second part, we establish the first results of perturbative multi-scale renormalization for a quartic scalar field on critical Galton-Watson trees, with a long-range kinetic term. At criticality, an emergent infinite spine provides a space of effective dimension $4/3$ on which to compute averaged correlation fonctions. This approach formalizes the notion of a QFT on a random geometry. We use known probabilistic bounds on the heat-kernel on a random graph reviewed in detail.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源