论文标题
Illustristng的固有比对及其对弱透镜的影响:潮汐剪切和潮汐扭矩机制进行了测试
Intrinsic Alignments in IllustrisTNG and their implications for weak lensing: Tidal shearing and tidal torquing mechanisms put to the test
论文作者
论文摘要
宇宙剪切信号的准确测量需要将真正的弱重力透镜信号与星系的固有形状相关性分开。这些星系的这些“固有比对”起源于星系形成过程,预计将通过影响星系的潮汐过程与重力场相关,例如用于椭圆星系的潮汐剪切和螺旋星系的潮汐扭矩。在这项研究中,我们使用Z = 0和Z = 1的椭圆形和螺旋星系的形态选择样品来测试常见的线性(潮汐剪切)和二次(潮汐扭矩)模型的常见模型。我们获得了线性和二次比对参数的局部测量,包括对宇宙学上较小的模拟体积的大规模各向异性的校正,并研究了它们对星系和环境特性的依赖性。我们发现椭圆星系(线性模型)的显着比对信号随质量和红移而增加。另一方面,螺旋星系(二次模型)仅对z = 1的最大物体显示出显着的信号。我们显示了螺旋星系的二次模型,以便在其基本假设上分解,并同时获得螺旋星系的重要信号,以根据线性模型对齐。我们使用派生的比对参数来计算固有的比对光谱,并估计通过欧几里得获得的弱透镜信号中的预期污染。
Accurate measurements of the cosmic shear signal require a separation of the true weak gravitational lensing signal from intrinsic shape correlations of galaxies. These `intrinsic alignments' of galaxies originate from galaxy formation processes and are expected to be correlated with the gravitational field through tidal processes affecting the galaxies, such as tidal shearing for elliptical galaxies and tidal torquing for spiral galaxies. In this study, we use morphologically selected samples of elliptical and spiral galaxies from the IllustrisTNG simulation at z=0 and z=1 to test the commonly employed linear (tidal shearing) and quadratic (tidal torquing) models for intrinsic alignments. We obtain local measurements of the linear and quadratic alignment parameters, including corrections for large-scale anisotropies of the cosmologically small simulation volume, and study their dependence on galaxy and environmental properties. We find a significant alignment signal for elliptical galaxies (linear model), that increases with mass and redshift. Spiral galaxies (quadratic model) on the other hand exhibit a significant signal only for the most massive objects at z=1. We show the quadratic model for spiral galaxies to break down at its fundamental assumptions, and simultaneously obtain a significant signal of spiral galaxies to align according to the linear model. We use the derived alignment parameters to compute intrinsic alignment spectra and estimate the expected contamination in the weak lensing signal obtained by Euclid.