论文标题
在有限的退化图中计数的接近线性时间同态计数:长期诱导周期的屏障
Near-Linear Time Homomorphism Counting in Bounded Degeneracy Graphs: The Barrier of Long Induced Cycles
论文作者
论文摘要
在输入图$ g $中计算恒定大小的图案图$ h $的同构是一个基本的计算问题。在输入$ g $和模式$ h $的各种限制下,研究了这个问题的复杂性有丰富的历史。鉴于此问题的重要性和大量现代投入,我们研究了何时可能进行近线性时间算法。我们专注于当输入图具有趋化性的情况下,这是一个经常研究且实际上相关的同态计数类。从以前的工作中知道,对于某些类别的$ h $,$ h $ homormormorphisms可以在有界的退化图中准确地计数。我们可以精确地表征$ h $的模式,以便为哪种近乎线性时间算法? 我们完全解决了这个问题,发现使用细粒度的复杂性发现了干净的二分法。令$ m $表示$ g $中的边缘数。我们证明了以下内容:如果$ h $中最大的诱导周期最多的$ 5 $,则有一个$ O(M \ log M)$算法用于计数$ h $ h $ hymormormormormormormormormormormormormormormormormormormorphisms,in Bounded DeNereracy图。如果$ h $中最大的诱导周期至少具有至少$ 6 $,则(假设标准的细粒复杂性猜想)有一个常数的$γ> 0 $,因此没有$ O(M^{1+γ})$ h $ -H $ -Momorphisms。
Counting homomorphisms of a constant sized pattern graph $H$ in an input graph $G$ is a fundamental computational problem. There is a rich history of studying the complexity of this problem, under various constraints on the input $G$ and the pattern $H$. Given the significance of this problem and the large sizes of modern inputs, we investigate when near-linear time algorithms are possible. We focus on the case when the input graph has bounded degeneracy, a commonly studied and practically relevant class for homomorphism counting. It is known from previous work that for certain classes of $H$, $H$-homomorphisms can be counted exactly in near-linear time in bounded degeneracy graphs. Can we precisely characterize the patterns $H$ for which near-linear time algorithms are possible? We completely resolve this problem, discovering a clean dichotomy using fine-grained complexity. Let $m$ denote the number of edges in $G$. We prove the following: if the largest induced cycle in $H$ has length at most $5$, then there is an $O(m\log m)$ algorithm for counting $H$-homomorphisms in bounded degeneracy graphs. If the largest induced cycle in $H$ has length at least $6$, then (assuming standard fine-grained complexity conjectures) there is a constant $γ> 0$, such that there is no $o(m^{1+γ})$ time algorithm for counting $H$-homomorphisms.