论文标题

双极泊松模型中的离子溶剂化

Ion Solvation in Dipolar Poisson models in a dual view

论文作者

Berthoumieux, H., Monet, G., Blossey, R.

论文摘要

我们研究了偶极岩石模型的连续理论中离子溶剂化的经典问题。在这种方法中,离子被视为点偶极子海中的点电荷。标准的偶极相孔模型以及保持二极密度固定的偶极 - 偏见模型都是标量静电电势$ ϕ $的非convex函数。应用A.C. Maggs引入的Legendre Transform方法[A.C. Maggs,Europhys。 Lett。 98,16012(2012)],这些模型的双重功能是得出的,并由电介质位移和偏振场的凸向矢量场功能给出。我们表明,偶极 - 二极 - 洛格文素的功能概括了MARCUS理论中用于电子转移速率到非线性方案的谐波极化函数,并且可以通过SPC/电子水的分子动力学模拟来定量参数。

We study the classic problem of ion solvation within the continuum theory of Dipolar-Poisson models. In this approach an ion is treated as a point charge within a sea of point dipoles. Both the standard Dipolar-Poisson model as well as the Dipolar-Poisson-Langevin model, which keeps the dipolar density fixed, are non-convex functionals of the scalar electrostatic potential $ϕ$. Applying the Legendre transform approach introduced by A.C. Maggs [A.C. Maggs, Europhys. Lett. 98, 16012 (2012)], the dual functionals of these models are derived and are given by convex vector-field functionals of the dielectric displacement and the polarization field. We show that the Dipolar-Poisson-Langevin functional generalizes the harmonic polarization functional used in the theory of Marcus for electron transfer rate to nonlinear regimes and can be quantitatively parametrized by molecular dynamics simulations for SPC/E-water.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源