论文标题

使用神经网络进行量子的增强学习,用于量子多个假设测试

Reinforcement Learning with Neural Networks for Quantum Multiple Hypothesis Testing

论文作者

Brandsen, Sarah, Stubbs, Kevin D., Pfister, Henry D.

论文摘要

通过神经网络(RLNN)的增强学习最近在许多问题上表现出了巨大的希望,包括量子信息理论中的一些问题。在这项工作中,我们将RLNN应用于量子假设测试,并确定区分多个量子状态$ \ {ρ_{J} \} $的最佳测量策略,同时最小化了误差概率。如果候选状态对应于具有许多量子组子系统的量子系统,则在整个系统上实施最佳测量是不可行的。 我们使用RLNN找到实验可行的本地自适应测量策略,在每个回合中仅测量一个量子子系统。我们提供数值结果,这些结果表明RLNN成功地找到了最佳的局部方法,即使对于候选人状态最多20个子系统也是如此。我们还证明,在每个随机试验中,RLNN策略符合或超过修改的本地贪婪方法的成功概率。 虽然RLNN的使用在设计自适应局部测量策略方面非常成功,但总的来说,在最佳局部自适应测量策略的成功概率与最佳集体测量之间可能存在显着差距。我们以先前的工作为基础,为集体协议提供一组必要和足够的条件,以严格胜过本地自适应协议。我们还提供了一个新示例,据我们所知,这是最简单的状态集,在本地协议和集体协议之间表现出很大的差距。该结果提出了有关理论上最佳测量策略与实际实施测量策略之间差距之间差距的有趣新问题。

Reinforcement learning with neural networks (RLNN) has recently demonstrated great promise for many problems, including some problems in quantum information theory. In this work, we apply RLNN to quantum hypothesis testing and determine the optimal measurement strategy for distinguishing between multiple quantum states $\{ ρ_{j} \}$ while minimizing the error probability. In the case where the candidate states correspond to a quantum system with many qubit subsystems, implementing the optimal measurement on the entire system is experimentally infeasible. We use RLNN to find locally-adaptive measurement strategies that are experimentally feasible, where only one quantum subsystem is measured in each round. We provide numerical results which demonstrate that RLNN successfully finds the optimal local approach, even for candidate states up to 20 subsystems. We additionally demonstrate that the RLNN strategy meets or exceeds the success probability for a modified locally greedy approach in each random trial. While the use of RLNN is highly successful for designing adaptive local measurement strategies, in general a significant gap can exist between the success probability of the optimal locally-adaptive measurement strategy and the optimal collective measurement. We build on previous work to provide a set of necessary and sufficient conditions for collective protocols to strictly outperform locally adaptive protocols. We also provide a new example which, to our knowledge, is the simplest known state set exhibiting a significant gap between local and collective protocols. This result raises interesting new questions about the gap between theoretically optimal measurement strategies and practically implementable measurement strategies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源