论文标题
使用可区分的合成发现图案结构
Discovering Pattern Structure Using Differentiable Compositing
论文作者
论文摘要
图案是以常规或几乎规范排列排列的元素的集合,是一种重要的图形艺术形式,由于其优雅的简单性和美学吸引力而被广泛使用。当图案被编码为没有基础结构的平面图像时,手动编辑模式是乏味和挑战性的,因为必须保留各个元素形状及其原始相对排列。在像素级别运行的最先进的深度学习框架不适合操纵这种模式。具体而言,这些方法可以轻松干扰单个元素的形状或它们的排列,因此无法保留输入模式的潜在结构。我们使用模式元素提出了一种新颖的可区分合成操作员,并使用它直接从原始图像图像中直接以图形对象的分层表示来发现结构。该操作员允许我们调整当前基于深度学习的图像方法来有效处理模式。我们在一系列模式上评估我们的方法,并在模式操作的背景下表现出优势
Patterns, which are collections of elements arranged in regular or near-regular arrangements, are an important graphic art form and widely used due to their elegant simplicity and aesthetic appeal. When a pattern is encoded as a flat image without the underlying structure, manually editing the pattern is tedious and challenging as one has to both preserve the individual element shapes and their original relative arrangements. State-of-the-art deep learning frameworks that operate at the pixel level are unsuitable for manipulating such patterns. Specifically, these methods can easily disturb the shapes of the individual elements or their arrangement, and thus fail to preserve the latent structures of the input patterns. We present a novel differentiable compositing operator using pattern elements and use it to discover structures, in the form of a layered representation of graphical objects, directly from raw pattern images. This operator allows us to adapt current deep learning based image methods to effectively handle patterns. We evaluate our method on a range of patterns and demonstrate superiority in the context of pattern manipulations when compared against state-of-the-art