论文标题
在中性多相关模型的频谱和终端性上
On the spectrum and ergodicity of a neutral multi-allelic Moran model
论文作者
论文摘要
本文的目的是提供对中性多类模型发电机的特征值的完整描述,以及对收敛速度与平稳性的研究的应用。我们认为的Moran模型是一个不可逆的,通常连续的马尔可夫链,其固定分布不明。具体来说,我们考虑$ n $个体,以便它们中的每一种都是$ k $可能的等位基因类型中的一种。个人通过两种方式进行互动:通过独立的不可约突变过程和通过繁殖过程,其中一对个体是随机选择的,其中一个死亡,另一个死亡。我们的主要结果根据跳跃速率矩阵的特征值,为Moran过程的无限发电机矩阵的特征值提供了明确的表达式。作为此结果的结果,我们研究了平稳性的总变化中的收敛性,并显示了MORAN过程的混合时间的下限。此外,我们详细研究了使用父独立突变方案中性多相关模型的频谱分解,这是使中性摩根过程可逆的独特突变方案。在父母独立的突变下,我们还证明了卡方中的截止现象的存在以及当最初所有个体都具有相同类型并且个体的数量倾向于无穷大时的总变异距离。此外,在没有繁殖的情况下,我们证明,当最初所有的个体都具有相同类型时,父母独立突变过程的总变异距离具有高斯分布。
The purpose of this paper is to provide a complete description of the eigenvalues of the generator of a neutral multi-type Moran model, and the applications to the study of the speed of convergence to stationarity. The Moran model we consider is a non-reversible in general, continuous-time Markov chain with an unknown stationary distribution. Specifically, we consider $N$ individuals such that each one of them is of one type among $K$ possible allelic types. The individuals interact in two ways: by an independent irreducible mutation process and by a reproduction process, where a pair of individuals is randomly chosen, one of them dies and the other reproduces. Our main result provides explicit expressions for the eigenvalues of the infinitesimal generator matrix of the Moran process, in terms of the eigenvalues of the jump rate matrix. As consequences of this result, we study the convergence in total variation of the process to stationarity and show a lower bound for the mixing time of the Moran process. Furthermore, we study in detail the spectral decomposition of the neutral multi-allelic Moran model with parent independent mutation scheme, which is the unique mutation scheme that makes the neutral Moran process reversible. Under the parent independent mutation, we also prove the existence of a cutoff phenomenon in the chi-square and the total variation distances when initially all the individuals are of the same type and the number of individuals tends to infinity. Additionally, in the absence of reproduction, we prove that the total variation distance to stationarity of the parent independent mutation process when initially all the individuals are of the same type has a Gaussian profile.