论文标题

动态环境中语义图的终身更新

Lifelong update of semantic maps in dynamic environments

论文作者

Narayana, Manjunath, Kolling, Andreas, Nardelli, Lucio, Fong, Phil

论文摘要

机器人通过从周围环境中感知到的原始信息来了解其世界。此原始信息不适用于机器人与其用户之间的共享表示。语义图,其中包含机器人和用户了解的高级信息,更适合作为共享表示形式。我们将语义图用作底层清洗机器人车队的面向用户界面。机器人感知的原始图,环境中的动态对象以及机器人对新空间的探索是机器人的常见挑战。在语义图的背景下有效地解决这些挑战是为终身映射提供语义图的关键。首先,随着机器人感受到新的变化并在连续运行中改变其原始地图时,必须对语义进行适当更新。我们使用语义的空间传输更新地图。其次,即使在有动态对象的情况下,将语义及其相对约束保持一致很重要。不一致会自动确定并通过引入元仪表的地图层来解决。最后,每当机器人发现新信息时,发现阶段允许使用新的语义进行更新。我们面向用户的语义图在实际房屋中的数千种楼层清洁机器人中进行了商业部署,通过终生的映射机器人提供了直观的用户体验。

A robot understands its world through the raw information it senses from its surroundings. This raw information is not suitable as a shared representation between the robot and its user. A semantic map, containing high-level information that both the robot and user understand, is better suited to be a shared representation. We use the semantic map as the user-facing interface on our fleet of floor-cleaning robots. Jitter in the robot's sensed raw map, dynamic objects in the environment, and exploration of new space by the robot are common challenges for robots. Solving these challenges effectively in the context of semantic maps is key to enabling semantic maps for lifelong mapping. First, as a robot senses new changes and alters its raw map in successive runs, the semantics must be updated appropriately. We update the map using a spatial transfer of semantics. Second, it is important to keep semantics and their relative constraints consistent even in the presence of dynamic objects. Inconsistencies are automatically determined and resolved through the introduction of a map layer of meta-semantics. Finally, a discovery phase allows the semantic map to be updated with new semantics whenever the robot uncovers new information. Deployed commercially on thousands of floor-cleaning robots in real homes, our user-facing semantic maps provide a intuitive user experience through a lifelong mapping robot.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源