论文标题

无限组件Chern-Simons量规理论中的分形顺序

Fractonic order in infinite-component Chern-Simons gauge theories

论文作者

Ma, Xiuqi, Shirley, Wilbur, Cheng, Meng, Levin, Michael, McGreevy, John, Chen, Xie

论文摘要

2+1D多组分$ u(1)$ g仪理论具有Chern-simons(CS)术语,提供了2+1D Abelian拓扑订单的简单而完整的表征。在本文中,我们通过将组件量规字段的数量延长到无穷大,并发现它们可以描述3+1D“分数”顺序的有趣类型。 “分形”描述了某些强烈相互作用系统中点激发的特殊现象要么根本无法移动,要么只允许在较低维度的子序列中移动。在最简单的无限组件CS量规理论的情况下,不同的组件不会彼此彼此,该理论描述了2+1D分数量子霍尔系统的脱钩堆栈,其准粒子仅在2D平面中移动,因此是分裂系统。我们发现,当组件仪字段通过CS项进行夫妇时,可能会有更多的分裂订单。例如,他们可以描述增加系统大小的叶状分形系统,需要插入非平凡的2+1D拓扑状态。此外,我们发现的例子超出了叶面框架,其特征是无限命令和编织统计数据的2D激发并非严格地本地。

2+1D multi-component $U(1)$ gauge theories with a Chern-Simons (CS) term provide a simple and complete characterization of 2+1D Abelian topological orders. In this paper, we extend the theory by taking the number of component gauge fields to infinity and find that they can describe interesting types of 3+1D "fractonic" order. "Fractonic" describes the peculiar phenomena that point excitations in certain strongly interacting systems either cannot move at all or are only allowed to move in a lower dimensional sub-manifold. In the simplest cases of infinite-component CS gauge theory, different components do not couple to each other and the theory describes a decoupled stack of 2+1D fractional Quantum Hall systems with quasi-particles moving only in 2D planes -- hence a fractonic system. We find that when the component gauge fields do couple through the CS term, more varieties of fractonic orders are possible. For example, they may describe foliated fractonic systems for which increasing the system size requires insertion of nontrivial 2+1D topological states. Moreover, we find examples which lie beyond the foliation framework, characterized by 2D excitations of infinite order and braiding statistics that are not strictly local.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源