论文标题
Berkovich曲线和Schottky统一化
Berkovich curves and Schottky uniformization
论文作者
论文摘要
该文本是从伯科维奇几何学的角度出发的非架构曲线和Schottky统一化的阐述。它由两个部分组成,是介绍性质的第一个部分,第二部分是更先进的。第一部分的目的是对伯科维奇空间理论的介绍,该理论集中在仿期线的情况下。我们定义了Berkovich仿期线并介绍其主要属性,并提供许多详细信息:分类点,路径连接性,度量标准结构,理性函数的变化等。与许多其他介绍性文本相反,我们不认为基础场是代数封闭的。第二部分致力于蒙福德曲线和肖特基统一的理论。我们首先简要审查Berkovich曲线的理论,然后以纯粹的分析方式引入Mumford曲线(不使用正式几何形状)。我们定义了作用于Berkovich投影线路的Schottky群体,强调了几何学和群体理论如何共同证明Schottky群体的作用是一种分析性Mumford曲线。最后,我们提供了肖特基统一化的分析证明,表明任何分析性芒福德曲线都可以描述为这种商品。我们博览会的指导原则是压力概念并完全证明了非一切集曲线理论的结果,据我们所知,这些曲线在其他文本中没有得到充分处理。
This text is an exposition of non-Archimedean curves and Schottky uniformization from the point of view of Berkovich geometry. It consists of two parts, the first one of an introductory nature, and the second one more advanced. The first part is meant to be an introduction to the theory of Berkovich spaces focused on the case of the affine line. We define the Berkovich affine line and present its main properties, with many details: classification of points, path-connectedness, metric structure, variation of rational functions, etc. Contrary to many other introductory texts, we do not assume that the base field is algebraically closed. The second part is devoted to the theory of Mumford curves and Schottky uniformization. We start by briefly reviewing the theory of Berkovich curves, then introduce Mumford curves in a purely analytic way (without using formal geometry). We define Schottky groups acting on the Berkovich projective line, highlighting how geometry and group theory come together to prove that the quotient by the action of a Schottky group is an analytic Mumford curve. Finally, we present an analytic proof of Schottky uniformization, showing that any analytic Mumford curves can be described as a quotient of this kind. The guiding principle of our exposition is to stress notions and fully prove results in the theory of non-Archimedean curves that, to our knowledge, are not fully treated in other texts.