论文标题
在$(λ,μ,γ)$ - bihom-lie代数的推导
On $(λ,μ,γ)$-derivations of BiHom-Lie algebras
论文作者
论文摘要
在本文中,我们将有关Lie代数的广义推导的结果推广到Bihom-Lie代数的情况。特别是我们给出了海森伯格·比霍姆(Heisenberg Bihom-Lie)代数的广义推导分类。广义推导的定义取决于某些参数$(λ,μ,γ)\ in \ mathbb {c}^{3}。 $尤其是$(λ,μ,γ)=(1,1,1)$,我们获得了Bihom-lie代数的经典概念,而对于$(λ,μ,γ)=(1,1,1,0)$,我们获得了Bihom-lie algebra的质心。我们提供$ 2 $维的BIHOM-LIE代数,质心和衍生物的分类为$ 2 $二维的Bihom-Lie代数。
In this paper, we generalize the results about generalized derivations of Lie algebras to the case of BiHom-Lie algebras. In particular we give the classification of generalized derivations of Heisenberg BiHom-Lie algebras. The definition of the generalized derivation depends on some parameters $ (λ,μ,γ)\in \mathbb{C}^{3}. $ In particular for $(λ,μ,γ)=(1,1,1)$, we obtain classical concept of derivation of BiHom-Lie algebra and for $(λ,μ,γ)=(1,1,0) $ we obtain the centroid of BiHom-Lie algebra. We give classifications of $ 2 $-dimensional BiHom-Lie algebra, centroides and derivations of $ 2 $-dimensional BiHom-Lie algebras.