论文标题

当测试成本可变时,进行有效采样超图的小组测试

Group Testing for Efficiently Sampling Hypergraphs When Tests Have Variable Costs

论文作者

Clarfeld, Laurence A., Eppstein, Margaret J.

论文摘要

在小组测试文献中,已经开发了有效的算法,以最大程度地减少确定嵌入在较大组中的所有最小“有缺陷的”亚组所需的测试数量,并使用具有广义二进制搜索的确定性组分裂。在另一份文献中,研究人员使用了随机组拆分方法来有效地从触发大型级联故障的电力系统中棘手数量的最小有缺陷的中断集中进行有效采样,在这个问题中,正面测试的计算可能比阴性测试更为昂贵。在这项工作中,我们生成具有可变数量集合数量和可调阳性的测试问题:负测试成本比率,以比较确定性和随机自适应组拆分算法的效率,以识别超级绘图中有缺陷的边缘。对于这两种算法,我们都表明,最佳初始组大小是有缺陷集的患病率和正面测试成本比率的函数。我们发现确定性分裂需要更少的总检验,但是随机分裂需要更少的正测试,因此这两种方法的相对效率取决于正面测试成本比率。我们讨论了一些实际应用程序,其中这些算法中的每种都应胜过另一个算法。

In the group-testing literature, efficient algorithms have been developed to minimize the number of tests required to identify all minimal "defective" sub-groups embedded within a larger group, using deterministic group splitting with a generalized binary search. In a separate literature, researchers have used a stochastic group splitting approach to efficiently sample from the intractable number of minimal defective sets of outages in electrical power systems that trigger large cascading failures, a problem in which positive tests can be much more computationally costly than negative tests. In this work, we generate test problems with variable numbers of defective sets and a tunable positive:negative test cost ratio to compare the efficiency of deterministic and stochastic adaptive group splitting algorithms for identifying defective edges in hypergraphs. For both algorithms, we show that the optimal initial group size is a function of both the prevalence of defective sets and the positive:negative test cost ratio. We find that deterministic splitting requires fewer total tests but stochastic splitting requires fewer positive tests, such that the relative efficiency of these two approaches depends on the positive:negative test cost ratio. We discuss some real-world applications where each of these algorithms is expected to outperform the other.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源