论文标题

检测手并识别野外的身体接触

Detecting Hands and Recognizing Physical Contact in the Wild

论文作者

Narasimhaswamy, Supreeth, Nguyen, Trung, Hoai, Minh

论文摘要

我们研究了一个新问题,即在不受约束的条件下识别他们的身体接触状态。鉴于需要推理超越当地的手的出现,这是一项具有挑战性的推理任务。缺乏训练注释,表明该手的对象或对象的部分与之接触的对象或部分使任务更加复杂。我们提出了一个基于Mask-RCNN的新型卷积网络,该网络可以共同学习本地局部并预测其身体接触以解决这个问题。该网络使用来自另一个对象检测器的输出来获取场景中存在的对象的位置。它使用这些输出和手部位置使用两种注意机制来识别手的接触状态。第一个注意机制是基于手和一个区域的亲和力,封闭了手和物体,并从该区域到手部区域密集的池特征。第二个注意模块可以自适应从这个合理的接触区域中选择显着特征。为了开发和评估我们的方法的性能,我们介绍了一个称为contacthands的大规模数据集,其中包含用手部位和接触状态注释的无约束图像。提出的网络(包括注意模块的参数)是端到端训练的。该网络比基线网络实现了大约7 \%的相对改进,该基线网络建立在香草面具-RCNN体系结构上,并接受了识别手接触状态的培训。

We investigate a new problem of detecting hands and recognizing their physical contact state in unconstrained conditions. This is a challenging inference task given the need to reason beyond the local appearance of hands. The lack of training annotations indicating which object or parts of an object the hand is in contact with further complicates the task. We propose a novel convolutional network based on Mask-RCNN that can jointly learn to localize hands and predict their physical contact to address this problem. The network uses outputs from another object detector to obtain locations of objects present in the scene. It uses these outputs and hand locations to recognize the hand's contact state using two attention mechanisms. The first attention mechanism is based on the hand and a region's affinity, enclosing the hand and the object, and densely pools features from this region to the hand region. The second attention module adaptively selects salient features from this plausible region of contact. To develop and evaluate our method's performance, we introduce a large-scale dataset called ContactHands, containing unconstrained images annotated with hand locations and contact states. The proposed network, including the parameters of attention modules, is end-to-end trainable. This network achieves approximately 7\% relative improvement over a baseline network that was built on the vanilla Mask-RCNN architecture and trained for recognizing hand contact states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源