论文标题
用于多体型模型学习的牛顿欧拉算法
A Differentiable Newton Euler Algorithm for Multi-body Model Learning
论文作者
论文摘要
在这项工作中,我们检查了多体机器人动力学域的混合模型范围。我们激励一个计算图架构,该计算体现了牛顿欧拉方程,强调了Lie代数形式的效用,以将动态几何形状转化为有效的学习计算结构。我们描述了使用的虚拟参数,该参数启用了无约束的物理合理动力学和使用的执行器模型。在实验中,我们定义了一个由26个灰色盒模型组成的家族,并将其评估以进行模拟和物理呋喃的摆和Cartpole的系统识别。比较表明,可以从数据准确地推断出先前的白框系统识别方法所需的运动学参数。此外,我们强调说,具有不受控制的系统的保证有界能量的模型会生成非发散轨迹,而更多的通用模型没有这样的保证,因此它们的性能在很大程度上取决于数据分布。因此,这项工作的主要贡献是引入白框模型,该模型共同学习动态和运动学参数,并且可以与黑盒组件结合使用。然后,我们对具有挑战性的系统和不同的数据集进行了广泛的经验评估,以使用可比的白色和黑色盒子模型阐明了灰色盒体系结构的比较性能。
In this work, we examine a spectrum of hybrid model for the domain of multi-body robot dynamics. We motivate a computation graph architecture that embodies the Newton Euler equations, emphasizing the utility of the Lie Algebra form in translating the dynamical geometry into an efficient computational structure for learning. We describe the used virtual parameters that enable unconstrained physical plausible dynamics and the used actuator models. In the experiments, we define a family of 26 grey-box models and evaluate them for system identification of the simulated and physical Furuta Pendulum and Cartpole. The comparison shows that the kinematic parameters, required by previous white-box system identification methods, can be accurately inferred from data. Furthermore, we highlight that models with guaranteed bounded energy of the uncontrolled system generate non-divergent trajectories, while more general models have no such guarantee, so their performance strongly depends on the data distribution. Therefore, the main contributions of this work is the introduction of a white-box model that jointly learns dynamic and kinematics parameters and can be combined with black-box components. We then provide extensive empirical evaluation on challenging systems and different datasets that elucidates the comparative performance of our grey-box architecture with comparable white- and black-box models.