论文标题

改进与人格建模谈判的对话系统

Improving Dialog Systems for Negotiation with Personality Modeling

论文作者

Yang, Runzhe, Chen, Jingxiao, Narasimhan, Karthik

论文摘要

在本文中,我们探讨了对对手进行建模和推断人格类型,预测他们的反应的能力,并使用此信息来适应对话代理在谈判任务中的高级策略。受到将思想理论(TOM)纳入机器的想法的启发,我们引入了一种概率表述,以在学习和推理过程中封装对手的人格类型。我们在Craigslistbargain数据集上测试了我们的方法,并表明我们使用TOM推断的方法比混合对手种群的基线比对话率提高了20%。我们还发现,我们的模型以不同类型的对手的方式显示了各种各样的谈判行为。

In this paper, we explore the ability to model and infer personality types of opponents, predict their responses, and use this information to adapt a dialog agent's high-level strategy in negotiation tasks. Inspired by the idea of incorporating a theory of mind (ToM) into machines, we introduce a probabilistic formulation to encapsulate the opponent's personality type during both learning and inference. We test our approach on the CraigslistBargain dataset and show that our method using ToM inference achieves a 20% higher dialog agreement rate compared to baselines on a mixed population of opponents. We also find that our model displays diverse negotiation behavior with different types of opponents.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源