论文标题
双气泡管道和两曲线拖鞋
Double bubble plumbings and two-curve flops
论文作者
论文摘要
我们讨论了通过沿圆的两个三维球来获得的Stein歧管的互合拓。这些空间是在派生的层面上相关的,并以特定几何形状确定的特征与局部三倍相关,这些三倍包含两个在某个点上符合两个floppable $(-1,-1)$ - 曲线。使用收缩代数,我们将球形对象分类为B侧,并导致拓扑后果,包括对分级精确的Lagrangians实现的同源类别的完整描述。
We discuss the symplectic topology of the Stein manifolds obtained by plumbing two 3-dimensional spheres along a circle. These spaces are related, at a derived level and working in a characteristic determined by the specific geometry, to local threefolds which contain two floppable $(-1,-1)$-curves meeting at a point. Using contraction algebras we classify spherical objects on the B-side, and derive topological consequences including a complete description of the homology classes realised by graded exact Lagrangians.