论文标题
渐近骨方程的精确解决方案
An exact solution to asymptotic Bethe equation
论文作者
论文摘要
我们为弱各向异性海森贝格自旋链的渐近伯特方程提供了精确的解决方案,该方程是一组非线性代数方程。该解决方案描述了具有固定磁化的铁磁基态以上的低能激发,并且与广义雅各比多项式有密切的关系。它等同于广义的stieltjes问题,并且在连续的限制中,它变成了与古典Landau-Lifshitz现场理论有限差距解决方案密切相关的Riemann-Hilbert问题。
We present an exact solution to the asymptotic Bethe equation of weakly anisotropic Heisenberg spin chain, which is a set of non-linear algebraic equations. The solution describes the low-energy excitations above ferromagnetic ground state with fixed magnetisation, and it has a close relation to generalised Jacobi polynomial. It is equivalent to a generalised Stieltjes problem and in the continuous limit, it becomes a Riemann-Hilbert problem closely related to the finite-gap solutions of classical Landau-Lifshitz field theory.