论文标题
高维解释方差分析近似中的分组转换和正则化
Grouped Transformations and Regularization in High-Dimensional Explainable ANOVA Approximation
论文作者
论文摘要
在本文中,我们提出了一种基于三角学多项式的高维近似工具,在该工程学中,我们仅允许变量的低维相互作用。在一般的高维环境中,已经有可能处理特殊的采样集,例如稀疏的电网或Rank-1 Lattices。这需要对函数的黑框访问,即在任何时候对其进行评估的能力。在这里,我们专注于沿尺寸的分散数据点和分组的频率索引集。从那里开始,我们提出了一个快速矩阵矢量乘法,分组的傅立叶变换,用于高维分组索引集。这些转换可用于基于方差分析(ANOVA)分解的先前介绍的近似函数的方法,该方法具有从ANOVA项到我们所提出的组的一对一信函。该方法能够在近似中动态检测到重要的ANOVA项集。在本文中,我们考虑了涉及的最小二乘问题,并添加了不同形式的正则化:经典的Tikhonov规范化,即正则化最小二乘和组套索的技术,从而促进了组中的稀疏性。至于后者,没有明确的溶液公式,这就是为什么我们应用快速迭代缩小阈值算法来获得最小化的原因。此外,我们讨论了将平滑度信息纳入最小二乘问题的可能性。在未确定和嘈杂的设置中进行的数值实验表明我们的算法的适用性。尽管我们考虑周期性的功能,但也可以将这个想法直接推广到非周期性功能。
In this paper we propose a tool for high-dimensional approximation based on trigonometric polynomials where we allow only low-dimensional interactions of variables. In a general high-dimensional setting, it is already possible to deal with special sampling sets such as sparse grids or rank-1 lattices. This requires black-box access to the function, i.e., the ability to evaluate it at any point. Here, we focus on scattered data points and grouped frequency index sets along the dimensions. From there we propose a fast matrix-vector multiplication, the grouped Fourier transform, for high-dimensional grouped index sets. Those transformations can be used in the application of the previously introduced method of approximating functions with low superposition dimension based on the analysis of variance (ANOVA) decomposition where there is a one-to-one correspondence from the ANOVA terms to our proposed groups. The method is able to dynamically detected important sets of ANOVA terms in the approximation. In this paper, we consider the involved least-squares problem and add different forms of regularization: Classical Tikhonov-regularization, namely, regularized least squares and the technique of group lasso, which promotes sparsity in the groups. As for the latter, there are no explicit solution formulas which is why we applied the fast iterative shrinking-thresholding algorithm to obtain the minimizer. Moreover, we discuss the possibility of incorporating smoothness information into the least-squares problem. Numerical experiments in under-, overdetermined, and noisy settings indicate the applicability of our algorithms. While we consider periodic functions, the idea can be directly generalized to non-periodic functions as well.