论文标题

Mathieu-Zhao在积极特征领域的空间

Mathieu-Zhao spaces over field of positive characteristic

论文作者

Liu, Fengli, Yan, Dan

论文摘要

令$ k $为特征$ p $,$δ$ a nonzero $ \ mathcal {e} $ - 推导和$ d = f(x_1)\ partial_1 $。我们首先证明$ \ operatorName {im} d $不是$ k [x_1] $的MATHIEU-ZHAO空间,并且仅当$ f(x_1)= x_1 = x_1^rf_1(x_1^p)$和$ r \ r \ r \ neq 1 $。然后,我们证明$ \ operatorname {im}δ$是$ k [x_1] $的MATHIEU-ZHAO空间,并且仅当$δ$不是本地nilpotent。最后,我们将一些$ K [x_1] $的nilpotent推导分类,并为$ d(i)$提供足够且必要的条件,使其成为$ k [x_1] $的Mathieu-zhao空间,用于任何理想的$ i $ a $ a $ k [x_1] $。

Let $K$ be a field of characteristic $p$, $δ$ a nonzero $\mathcal{E}$-derivation and $D=f(x_1)\partial_1$. We first prove that $\operatorname{Im}D$ is not a Mathieu-Zhao space of $K[x_1]$ if and only if $f(x_1)=x_1^rf_1(x_1^p)$ and $r\neq 1$. Then we prove that $\operatorname{Im}δ$ is a Mathieu-Zhao space of $K[x_1]$ if and only if $δ$ is not locally nilpotent. Finally, we classify some nilpotent derivations of $K[x_1]$ and give a sufficient and necessary condition for $D(I)$ to be a Mathieu-Zhao space of $K[x_1]$ for any ideal $I$ of $K[x_1]$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源