论文标题

爱因斯坦 - 马克斯韦斯 - 加斯 - 摩纳网式理论中的新型毛茸茸的黑洞解决方案

Novel Hairy Black Hole Solutions in Einstein-Maxwell-Gauss-Bonnet-Scalar Theory

论文作者

Hunter, Callum L, Smith, Douglas J

论文摘要

以前已经显示,高斯 - 骨网术语非最少耦合到标量场会产生标量的黑洞溶液,该溶液可以被视为具有次级标量头发,以黑洞的质量和电荷为参数。在本文中,我们将表格$ f(ϕ)= ϕ $的先前研究的线性耦合扩展到非最小耦合的麦克斯韦术语,并带有$ \ frac {1} {1} {8} f_ {μν} f_ {μLν} f^{μLν} f^{μLν}+βxf_{μb_{μ通过使用数值方法,可以找到整个微分方程的解决方案,以及$ r \ rightarrow \ infty $ limit的扰动扩展和耦合参数(例如$β$)的扰动扩展。这些解决方案描述了具有改性电场的标量黑洞,这些电场不仅依赖于黑洞的电荷,还依赖于非微耦合常数的值以及黑洞的地平线半径或质量。我们还通过解决方案的现实条件讨论了对黑洞参数施加的边界,从而提供了一些显式的数值边界。

It has been previously shown that a Gauss-Bonnet term non-minimally coupled to a scalar field produces a scalarised black hole solution, which can be considered as having secondary scalar hair, parametrised in terms of the black hole's mass and charge. In this paper we extend a previously investigated linear coupling of the form $f(ϕ)=ϕ$ to a non-minimally coupled Maxwell term, with the form $\frac{1}{8}F_{μν}F^{μν}+βϕF_{μν}F^{μν}$. By using numerical methods the solutions to the full differential equations are found, as well as a perturbative expansion in the $r\rightarrow\infty$ limit and a perturbative expansion in couplings parameters such as $β$. These solutions describe scalarised black holes with modified electric field which have dependence not only on the electric charge of the black hole, but also the value of the non-minimal coupling constant and the horizon radius or mass of the black hole. We also discuss the bounds imposed on the parameters of the black hole by the reality condition of the solution, giving some explicit numerical bounds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源