论文标题

用于趋势分析的计算工具和COVID-19大流行的预测

A computational tool for trend analysis and forecast of the COVID-19 pandemic

论文作者

Paiva, Henrique Mohallem, Afonso, Rubens Junqueira Magalhaes, Caldeira, Fabiana Mara Scarpelli de Lima Alvarenga, Velasquez, Ester de Andrade

论文摘要

目的:本文提出了一种方法和一种计算工具,用于研究世界各地的COVID-19大流行,并进行趋势分析以评估其局部动态。 方法:使用数学函数来描述每个区域中的案例和损失的数量,并预测其最终数量,以及最大每日发生的日期和局部稳定日期。使用计算方法来校准模型参数以进行数值优化。进行趋势分析,从而评估公共政策的影响。提供了易于解释的指标在拟合曲线的质量上。欧洲疾病预防与控制中心(ECDC)的乡村数据涉及世界各地的日常案件和危害数量,以及约翰·霍普金斯大学和Brasil.io项目的详细数据,分别描述了美国县以及巴西州和巴西州和Cities的事件。选择美国和巴西进行更详细的分析,因为它们是当前大流行的焦点。 结果:介绍和讨论了不同国家,美国县和巴西国家和城市的说明结果。 结论:这项工作的主要贡献在于(i)曲线的直接模型以表示数据,该模型允许在不需要专家干预的情况下自动化流程; (ii)一种创新的趋势分析方法,其结果提供了重要的信息,以支持当局决策过程; (iii)开发的计算工具,该工具可以免费获得,并允许用户快速更新任何国家,美国县或巴西州或巴西州或城市的COVID-19分析和预测,并在当局定期报告中出现。

Purpose: This paper proposes a methodology and a computational tool to study the COVID-19 pandemic throughout the world and to perform a trend analysis to assess its local dynamics. Methods: Mathematical functions are employed to describe the number of cases and demises in each region and to predict their final numbers, as well as the dates of maximum daily occurrences and the local stabilization date. The model parameters are calibrated using a computational methodology for numerical optimization. Trend analyses are run, allowing to assess the effects of public policies. Easy to interpret metrics over the quality of the fitted curves are provided. Country-wise data from the European Centre for Disease Prevention and Control (ECDC) concerning the daily number of cases and demises around the world are used, as well as detailed data from Johns Hopkins University and from the Brasil.io project describing individually the occurrences in United States counties and in Brazilian states and cities, respectively. U. S. and Brazil were chosen for a more detailed analysis because they are the current foci of the pandemic. Results: Illustrative results for different countries, U. S. counties and Brazilian states and cities are presented and discussed. Conclusion: The main contributions of this work lie in (i) a straightforward model of the curves to represent the data, which allows automation of the process without requiring interventions from experts; (ii) an innovative approach for trend analysis, whose results provide important information to support authorities in their decision-making process; and (iii) the developed computational tool, which is freely available and allows the user to quickly update the COVID-19 analyses and forecasts for any country, United States county or Brazilian state or city present in the periodic reports from the authorities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源