论文标题

探索使用CNN的单个图像来探索过度的表示

Exploring Overcomplete Representations for Single Image Deraining using CNNs

论文作者

Yasarla, Rajeev, Valanarasu, Jeya Maria Jose, Patel, Vishal M.

论文摘要

从单个图像中删除雨条是一个极具挑战性的问题,因为雨图像通常包含不同大小,形状,方向和密度不同的雨条。最新的方法是使用遵循通用的“编码器”体系结构的深网,该网络在较深的层中捕获了初始层和高级特征的低级特征。对于降低的任务,要删除的雨条是相对较小的,并且专注于全球特征并不是解决问题的有效方法。为此,我们建议使用过度的卷积网络体系结构,该卷积网络体系结构通过限制过滤器的接受场来特别注意学习局部结构。我们将其与U-NET相结合,因此它也不会在全局结构上丢失,同时更多地关注低级特征,以计算DER的图像。所提出的称为Over-Over-Over-dernain网络(OUCD)的网络由两个分支组成:超过的分支,该分支仅限于小型接收场的大小,以专注于局部结构和一个具有较大接收场的底层分支,该分支具有较大的接收场,主要集中在全球结构上。关于合成和实际数据集的广泛实验表明,所提出的方法对最近的最新方法实现了重大改进。

Removal of rain streaks from a single image is an extremely challenging problem since the rainy images often contain rain streaks of different size, shape, direction and density. Most recent methods for deraining use a deep network following a generic "encoder-decoder" architecture which captures low-level features across the initial layers and high-level features in the deeper layers. For the task of deraining, the rain streaks which are to be removed are relatively small and focusing much on global features is not an efficient way to solve the problem. To this end, we propose using an overcomplete convolutional network architecture which gives special attention in learning local structures by restraining the receptive field of filters. We combine it with U-Net so that it does not lose out on the global structures as well while focusing more on low-level features, to compute the derained image. The proposed network called, Over-and-Under Complete Deraining Network (OUCD), consists of two branches: overcomplete branch which is confined to small receptive field size in order to focus on the local structures and an undercomplete branch that has larger receptive fields to primarily focus on global structures. Extensive experiments on synthetic and real datasets demonstrate that the proposed method achieves significant improvements over the recent state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源