论文标题

图像反转和不确定性定量模式形成定律

Image Inversion and Uncertainty Quantification for Constitutive Laws of Pattern Formation

论文作者

Zhao, Hongbo, Braatz, Richard D., Bazant, Martin Z.

论文摘要

广泛的理论研究和仿真使模式形成的前进问题极大地赋予了能力,但是,相反的问题不太了解。目前尚不清楚如何使用模式形成的图像来学习管理方程中非线性和非局部构造关系的功能形式。我们使用PDE受限的优化来推断管理动力学和构造关系,并使用贝叶斯推理和线性化来量化其在不同系统,操作条件和成像条件下的不确定性。我们讨论了减少推断功能的不确定性及其之间的相关性的条件,例如状态依赖性自由能和反应动力学(或扩散率)。我们介绍反转算法,并说明其在有限的时空分辨率,未知边界条件,模糊初始条件和其他非理想情况下的鲁棒性和不确定性。在某些情况下,可以包括以前的物理知识来限制结果。相位场,反应扩散和相位晶体模型用作模型系统。此处开发的方法可以在推断复杂模式形成系统的未知物理特性以及指导其实验设计方面找到应用。

The forward problems of pattern formation have been greatly empowered by extensive theoretical studies and simulations, however, the inverse problem is less well understood. It remains unclear how accurately one can use images of pattern formation to learn the functional forms of the nonlinear and nonlocal constitutive relations in the governing equation. We use PDE-constrained optimization to infer the governing dynamics and constitutive relations and use Bayesian inference and linearization to quantify their uncertainties in different systems, operating conditions, and imaging conditions. We discuss the conditions to reduce the uncertainty of the inferred functions and the correlation between them, such as state-dependent free energy and reaction kinetics (or diffusivity). We present the inversion algorithm and illustrate its robustness and uncertainties under limited spatiotemporal resolution, unknown boundary conditions, blurry initial conditions, and other non-ideal situations. Under certain situations, prior physical knowledge can be included to constrain the result. Phase-field, reaction-diffusion, and phase-field-crystal models are used as model systems. The approach developed here can find applications in inferring unknown physical properties of complex pattern-forming systems and in guiding their experimental design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源