论文标题

关于疤痕分割和临床特征提取的对比增强心脏MRI的解剖学深入学习

Anatomically-Informed Deep Learning on Contrast-Enhanced Cardiac MRI for Scar Segmentation and Clinical Feature Extraction

论文作者

Abramson, Haley G., Popescu, Dan M., Yu, Rebecca, Lai, Changxin, Shade, Julie K., Wu, Katherine C., Maggioni, Mauro, Trayanova, Natalia A.

论文摘要

在心脏磁共振(CMR)成像中可视化疾病诱导的疤痕和纤维化,并具有对比度增强(LGE)对于表征疾病进展和量化心律不齐的病理生理底物的至关重要。但是,LGE-CMR的分割和疤痕/纤维化鉴定是一个容易出现大型观察者变异性的密集的手动过程。在这里,我们提出了一种新型的针对左心室(LV)和疤痕/纤维化分割的全动解剖学深度学习解决方案,以及从LGE-CMR中提取的临床特征。该技术涉及三个级联的卷积神经网络,这些卷积神经网络从原始LGE-CMR图像中分割心肌和疤痕/纤维化,并将这些分割限制在解剖学指南中,从而促进临床上重要参数的无缝衍生。除了可用的LGE-CMR图像外,训练还使用了“ LGE样”合成增强的Cine扫描。结果表明,在细分方面,与受过训练的专家的人达成了极好的一致性(级别的$ 96 \%$和$ 75 \%$的均衡准确性和$ 75 \%$),临床功能($ 2 \%$ $ 2 \%$在平均疤痕到LV墙量分数的差异)和解剖学的忠诚度。我们的细分技术可扩展到其他计算机视觉医疗应用以及需要预测产出的指南的问题。

Visualizing disease-induced scarring and fibrosis in the heart on cardiac magnetic resonance (CMR) imaging with contrast enhancement (LGE) is paramount in characterizing disease progression and quantifying pathophysiological substrates of arrhythmias. However, segmentation and scar/fibrosis identification from LGE-CMR is an intensive manual process prone to large inter-observer variability. Here, we present a novel fully-automated anatomically-informed deep learning solution for left ventricle (LV) and scar/fibrosis segmentation and clinical feature extraction from LGE-CMR. The technology involves three cascading convolutional neural networks that segment myocardium and scar/fibrosis from raw LGE-CMR images and constrain these segmentations within anatomical guidelines, thus facilitating seamless derivation of clinically-significant parameters. In addition to available LGE-CMR images, training used "LGE-like" synthetically enhanced cine scans. Results show excellent agreement with those of trained experts in terms of segmentation (balanced accuracy of $96\%$ and $75\%$ for LV and scar segmentation), clinical features ($2\%$ difference in mean scar-to-LV wall volume fraction), and anatomical fidelity. Our segmentation technology is extendable to other computer vision medical applications and to problems requiring guidelines adherence of predicted outputs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源