论文标题

Black-Box Ripper:使用生成进化算法复制黑盒模型

Black-Box Ripper: Copying black-box models using generative evolutionary algorithms

论文作者

Barbalau, Antonio, Cosma, Adrian, Ionescu, Radu Tudor, Popescu, Marius

论文摘要

我们研究复制黑盒神经模型功能的任务,我们只知道为一组输入图像提供的输出类概率。我们假设无法通过黑框模型进行反向传播,并且其训练图像不可用,例如该模型只能通过API暴露。在这种情况下,我们提出了一个教师学生的框架,可以将黑箱(教师)模型提炼成具有最小准确性损失的学生模型。为了生成有用的数据样本以培训学生,我们的框架(i)学会在代理数据集上生成图像(图像和类别与用于训练黑色框的图像和类别不同),并且(ii)应用进化策略,以确保每个生成的数据示例在给予黑匣子的输入时对特定类别显示出高响应。将我们的框架与三个基准数据集的几种基线和最先进的方法进行了比较。经验证据表明,我们的模型优于所考虑的基准。尽管我们的方法不会通过黑盒网络回到范围内,但它通常超过将教师视为玻璃盒模型的最新方法。我们的代码可在以下网址找到:https://github.com/antoniobarbalau/black-box-ripper。

We study the task of replicating the functionality of black-box neural models, for which we only know the output class probabilities provided for a set of input images. We assume back-propagation through the black-box model is not possible and its training images are not available, e.g. the model could be exposed only through an API. In this context, we present a teacher-student framework that can distill the black-box (teacher) model into a student model with minimal accuracy loss. To generate useful data samples for training the student, our framework (i) learns to generate images on a proxy data set (with images and classes different from those used to train the black-box) and (ii) applies an evolutionary strategy to make sure that each generated data sample exhibits a high response for a specific class when given as input to the black box. Our framework is compared with several baseline and state-of-the-art methods on three benchmark data sets. The empirical evidence indicates that our model is superior to the considered baselines. Although our method does not back-propagate through the black-box network, it generally surpasses state-of-the-art methods that regard the teacher as a glass-box model. Our code is available at: https://github.com/antoniobarbalau/black-box-ripper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源