论文标题

热带气旋流行病学的综合因果预测的机器学习模型

Integrated causal-predictive machine learning models for tropical cyclone epidemiology

论文作者

Nethery, Rachel C., Katz-Christy, Nina, Kioumourtzoglou, Marianthi-Anna, Parks, Robbie M., Schumacher, Andrea, Anderson, G. Brooke

论文摘要

战略准备已被证明可以减少飓风和热带风暴的不利健康影响,被称为热带气旋(TC),但通过对TC流行病学的更全面和严格的特征,可以增强其保护性影响。为了产生高精度TC准备所需的见解和工具,我们开发并采用了一种新颖的贝叶斯机器学习方法,标准化了对历史TC健康影响的估计,发现这些健康影响中的共同模式和异质性的来源,并能够确定对未来TC的最高健康风险的社区。该模型集成了(1)因果推理成分,以量化高空间分辨率下最近历史TC的健康影响,以及(2)捕获受影响社区的TC气象特征和社会经济/人口统计学如何与健康影响相关的预测组成部分。我们将其应用于包含详细历史的TC暴露信息和Medicare索赔数据的丰富数据平台。我们分析中使用的健康结果是全因死亡率以及与呼吸有关的住院治疗。我们报告了历史悠久的TC在TC水平和社区水平上对急性健康影响的高度异质性,在围绕TCS周围的为期两周的时间里,呼吸住院平均而大幅增加。发现TC持续的风速是增加死亡率和呼吸风险的主要驱动力。我们的建模方法具有更广泛的实用性,可以预测许多极端气候事件的健康影响。

Strategic preparedness has been shown to reduce the adverse health impacts of hurricanes and tropical storms, referred to collectively as tropical cyclones (TCs), but its protective impact could be enhanced by a more comprehensive and rigorous characterization of TC epidemiology. To generate the insights and tools necessary for high-precision TC preparedness, we develop and apply a novel Bayesian machine learning approach that standardizes estimation of historic TC health impacts, discovers common patterns and sources of heterogeneity in those health impacts, and enables identification of communities at highest health risk for future TCs. The model integrates (1) a causal inference component to quantify the immediate health impacts of recent historic TCs at high spatial resolution and (2) a predictive component that captures how TC meteorological features and socioeconomic/demographic characteristics of impacted communities are associated with health impacts. We apply it to a rich data platform containing detailed historic TC exposure information and Medicare claims data. The health outcomes used in our analyses are all-cause mortality and cardiovascular- and respiratory-related hospitalizations. We report a high degree of heterogeneity in the acute health impacts of historic TCs at both the TC level and the community level, with substantial increases in respiratory hospitalizations, on average, during a two-week period surrounding TCs. TC sustained windspeeds are found to be the primary driver of increased mortality and respiratory risk. Our modeling approach has broader utility for predicting the health impacts of many types of extreme climate events.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源