论文标题

可解释的深视觉系统,用于具有自动后部署后期培训的步道相机图像中的动物分类和检测

An explainable deep vision system for animal classification and detection in trail-camera images with automatic post-deployment retraining

论文作者

Moallem, Golnaz, Pathirage, Don D., Reznick, Joel, Gallagher, James, Sari-Sarraf, Hamed

论文摘要

本文在德克萨斯公园和野生动植物部门的管理下介绍了一种自动化视觉系统,用于动物检测系统。由于传统的野生动植物计数技术是侵入性的,而且要进行大量的劳动力进行,因此触觉相机成像是一种捕获野生动植物活动的相对非侵入性方法。但是,鉴于从TRAIL-CAMERAS产生的大量图像,对图像的手动分析仍然耗时且效率低下。我们实施了两阶段的深卷积神经网络管道,以在第一阶段找到含动物的图像,然后处理这些图像以在第二阶段检测鸟类。动物分类系统对动物图像进行了总体93%的敏感性和96%的特异性分类。鸟类检测系统的实现优于93%的灵敏度,92%的特异性和平均平均近距离率的68%。整个管道在不到0.5秒的时间内处理图像,而不是人类标签的平均30秒。我们还解决了与动物分类系统数据漂移有关的数据漂移有关的问题,因为图像特征随季节性变化而变化。该系统利用自动再培训算法来检测数据漂移并更新系统。我们介绍了一种新型技术,用于检测漂移的图像并触发再训练程序。还提出了两个统计实验,以解释动物分类系统的预测行为。这些实验调查了将系统驱动到特定决定的提示。统计假设检验表明,输入图像中动物的存在显着有助于系统的决策。

This paper introduces an automated vision system for animal detection in trail-camera images taken from a field under the administration of the Texas Parks and Wildlife Department. As traditional wildlife counting techniques are intrusive and labor intensive to conduct, trail-camera imaging is a comparatively non-intrusive method for capturing wildlife activity. However, given the large volume of images produced from trail-cameras, manual analysis of the images remains time-consuming and inefficient. We implemented a two-stage deep convolutional neural network pipeline to find animal-containing images in the first stage and then process these images to detect birds in the second stage. The animal classification system classifies animal images with overall 93% sensitivity and 96% specificity. The bird detection system achieves better than 93% sensitivity, 92% specificity, and 68% average Intersection-over-Union rate. The entire pipeline processes an image in less than 0.5 seconds as opposed to an average 30 seconds for a human labeler. We also addressed post-deployment issues related to data drift for the animal classification system as image features vary with seasonal changes. This system utilizes an automatic retraining algorithm to detect data drift and update the system. We introduce a novel technique for detecting drifted images and triggering the retraining procedure. Two statistical experiments are also presented to explain the prediction behavior of the animal classification system. These experiments investigate the cues that steers the system towards a particular decision. Statistical hypothesis testing demonstrates that the presence of an animal in the input image significantly contributes to the system's decisions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源