论文标题
quasiperiodic floquet-无尽能量泵
Quasiperiodic Floquet-Thouless energy pump
论文作者
论文摘要
最近的工作[M. H. kolodrubetz等人,PRL 120,150601]证明,定期驱动的一维费米子系统可以支持第二个参数的绝热调制导致的量化能量泵。在这项工作中,我们探索了这种拓扑浮雕 - 在准碘驾驶方案中,参数驾驶以有限的频率发生。我们表明,只要它们与驾驶频率不相同,并且该系统仍被空间疾病定位,那么能量泵送的量化持续存在。因此,拓扑floquet-thouless能量泵超出绝热状态,占据了有限的参数空间区域。远离这些拓扑阶段的相变伴随着位置空间,光子数(能量)空间或两者兼而有之。使用尺寸还原方案,我们证明可以使用由两种不稳定模式驱动的空腔标准系统实现相关阶段。
Recent work [M. H. Kolodrubetz et al, PRL 120, 150601] has demonstrated that periodically driven one-dimensional fermionic systems can support quantized energy pumping resulting from an adiabatic modulation of a second parameter. In this work, we explore this topological Floquet-Thouless energy pump in the quasiperiodic driving regime where the parametric driving occurs at finite frequency. We show that quantization of energy pumping persists for finite ramping frequencies, as long as they are incommensurate with the driving frequency, and the system remains localized by spatial disorder. Thus, the topological Floquet-Thouless energy pump is stable beyond the adiabatic regime, occupying a finite region of parameter space. Phase transitions away from these topological phases are accompanied by delocalization in position space, photon number (energy) space, or both. Using a dimensional reduction scheme, we demonstrate that a related phase can be realized with a cavity-qubit system driven by two incommensurate modes.