论文标题

四元成标的变异自动编码器

A Quaternion-Valued Variational Autoencoder

论文作者

Grassucci, Eleonora, Comminiello, Danilo, Uncini, Aurelio

论文摘要

深层概率生成模型在许多应用领域都取得了令人难以置信的成功。在此类模型中,变异自动编码器(VAE)通过学习输入的潜在表示,证明了它们在建模生成过程中的能力。在本文中,我们提出了一个在四元结构域中定义的新型VAE,该VAE利用了四元素代数的性质以提高性能,同时显着减少了网络所需的参数数量。提议的四元基因在传统VAE方面的成功取决于利用季相值输入特征和二阶统计属性之间的内部关系的能力,这些能力允许在增强的Quaternion域中定义潜在变量。为了显示由于这种属性的优势,我们定义了四元素域中的普通卷积VAE,并评估了其在Celeba Face数据集中其实值对应物的性能。

Deep probabilistic generative models have achieved incredible success in many fields of application. Among such models, variational autoencoders (VAEs) have proved their ability in modeling a generative process by learning a latent representation of the input. In this paper, we propose a novel VAE defined in the quaternion domain, which exploits the properties of quaternion algebra to improve performance while significantly reducing the number of parameters required by the network. The success of the proposed quaternion VAE with respect to traditional VAEs relies on the ability to leverage the internal relations between quaternion-valued input features and on the properties of second-order statistics which allow to define the latent variables in the augmented quaternion domain. In order to show the advantages due to such properties, we define a plain convolutional VAE in the quaternion domain and we evaluate its performance with respect to its real-valued counterpart on the CelebA face dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源