论文标题
从实例轮廓学习全盘细分
Learning Panoptic Segmentation from Instance Contours
论文作者
论文摘要
PANOPTIC分割旨在提供对像素级别的背景(物体)(事物)实例的理解。它结合了语义细分的单独任务(像素级分类)和实例分段,以构建一个统一的场景理解任务。通常,通过组合单独或共同学习(多任务网络)的语义和实例分割任务来得出全景分割。通常,实例分割网络是通过在对象检测器顶部添加前景掩码估计层或使用实例聚类方法将像素分配给实例中心的实例群集方法来构建的。在这项工作中,我们提出了一个完全卷积的神经网络,该网络从语义分割和实例轮廓(事物的边界)中学习实例分割。实例轮廓以及语义分割产生了事物的边界意识到的语义分割。这些结果上的连接组件标记会产生实例分割。我们将语义和实例分割结果合并到输出泛型分割。我们在城市景观数据集上评估了我们提出的方法,以证明定性和定量性能以及几项消融研究。我们的概述视频可以从url:https://youtu.be/wbtcxrhg3e0访问。
Panoptic Segmentation aims to provide an understanding of background (stuff) and instances of objects (things) at a pixel level. It combines the separate tasks of semantic segmentation (pixel level classification) and instance segmentation to build a single unified scene understanding task. Typically, panoptic segmentation is derived by combining semantic and instance segmentation tasks that are learned separately or jointly (multi-task networks). In general, instance segmentation networks are built by adding a foreground mask estimation layer on top of object detectors or using instance clustering methods that assign a pixel to an instance center. In this work, we present a fully convolution neural network that learns instance segmentation from semantic segmentation and instance contours (boundaries of things). Instance contours along with semantic segmentation yield a boundary aware semantic segmentation of things. Connected component labeling on these results produces instance segmentation. We merge semantic and instance segmentation results to output panoptic segmentation. We evaluate our proposed method on the CityScapes dataset to demonstrate qualitative and quantitative performances along with several ablation studies. Our overview video can be accessed from url:https://youtu.be/wBtcxRhG3e0.