论文标题
关于在AR/VR应用程序的头部安装显示中,基准测试了IRIS识别
On Benchmarking Iris Recognition within a Head-mounted Display for AR/VR Application
论文作者
论文摘要
增强和虚拟现实正在应用于应用程序的不同领域。此类应用程序可能涉及访问或处理关键和敏感信息,这需要严格持续的访问控制。鉴于为此类应用程序开发的头部安装显示器(HMD)通常包含用于凝视跟踪目的的内部摄像头,我们评估了此类设置的适用性,可通过IRIS识别来验证用户。在这项工作中,我们首先评估了一组虹膜识别算法,该算法适用于适用于HMD设备,通过研究三种完善的手工制作的特征提取方法,并补充它,我们还使用四个深度学习模型进行了分析。在考虑独立HMD的简约硬件要求时,我们采用并适应了最近开发的微型细分模型(EYEMMS)来分割虹膜。此外,为了说明对虹膜的非理想和非授权捕获,我们定义了一个新的虹膜质量指标,我们称我们为IRIS掩膜比(IMR)来量化虹膜识别性能。由于虹膜识别的表现,我们还提出了在HMD中非授权捕获设置中对用户的持续身份验证。通过在公开开放的数据集中的实验,我们表明,使用深度学习方法在一般环境中可以实现EER = 5%的性能,以及用于连续用户身份验证的高精度。
Augmented and virtual reality is being deployed in different fields of applications. Such applications might involve accessing or processing critical and sensitive information, which requires strict and continuous access control. Given that Head-Mounted Displays (HMD) developed for such applications commonly contains internal cameras for gaze tracking purposes, we evaluate the suitability of such setup for verifying the users through iris recognition. In this work, we first evaluate a set of iris recognition algorithms suitable for HMD devices by investigating three well-established handcrafted feature extraction approaches, and to complement it, we also present the analysis using four deep learning models. While taking into consideration the minimalistic hardware requirements of stand-alone HMD, we employ and adapt a recently developed miniature segmentation model (EyeMMS) for segmenting the iris. Further, to account for non-ideal and non-collaborative capture of iris, we define a new iris quality metric that we termed as Iris Mask Ratio (IMR) to quantify the iris recognition performance. Motivated by the performance of iris recognition, we also propose the continuous authentication of users in a non-collaborative capture setting in HMD. Through the experiments on a publicly available OpenEDS dataset, we show that performance with EER = 5% can be achieved using deep learning methods in a general setting, along with high accuracy for continuous user authentication.