论文标题

没有FKG的平面高斯渗滤模型的相变

The phase transition for planar Gaussian percolation models without FKG

论文作者

Muirhead, Stephen, Rivera, Alejandro, Vanneuville, Hugo, Köhler-Schindler, Laurin

论文摘要

我们开发技术来研究不(一定)正相关的平面高斯渗滤模型的相变。这些模型缺乏积极关联的特性(也称为“ FKG不平等”),因此,渗透理论中的许多经典论证不适用。更准确地说,我们考虑了平稳的固定式固定的平面高斯田地$ f $,并且鉴于\ mathbb {r} $的Level $ \ ell \,我们研究了游览集$ \ {f \ geq - \ ell \ ell \} $的连接性属性。我们证明在关键级别$ \ ell_ {crit} = 0 $仅在对称和(非常轻微的)相关衰减假设下存在相变的存在,例如,随机平面波满足。结果,尽管我们的结果并没有解决零级线的界限(“临界值无渗透”),但所有非零级线几乎肯定是有限的。 为了显示我们的主要结果:(i)我们证明了受Chatterjee启发的一般尖锐阈值标准,该标准指出“尖锐的阈值等于阈值位置的分离”; (ii)我们证明了大规模跨越事件的阈值定位 - 在此步骤中,我们获得了一个尖锐的阈值结果,但无法定位阈值 - (iii)以识别阈值,我们改编了Tassion的RSW理论,通过洒水程序来代替FKG不等式。尽管某些论点特定于高斯环境,但许多步骤非常笼统,我们希望我们的技术可以适应没有FKG的其他模型。

We develop techniques to study the phase transition for planar Gaussian percolation models that are not (necessarily) positively correlated. These models lack the property of positive associations (also known as the `FKG inequality'), and hence many classical arguments in percolation theory do not apply. More precisely, we consider a smooth stationary centred planar Gaussian field $f$ and, given a level $\ell \in \mathbb{R}$, we study the connectivity properties of the excursion set $\{f \geq -\ell\}$. We prove the existence of a phase transition at the critical level $\ell_{crit}=0$ under only symmetry and (very mild) correlation decay assumptions, which are satisfied by the random plane wave for instance. As a consequence, all non-zero level lines are bounded almost surely, although our result does not settle the boundedness of zero level lines (`no percolation at criticality'). To show our main result: (i) we prove a general sharp threshold criterion, inspired by works of Chatterjee, that states that `sharp thresholds are equivalent to the delocalisation of the threshold location'; (ii) we prove threshold delocalisation for crossing events at large scales -- at this step we obtain a sharp threshold result but without being able to locate the threshold -- and (iii) to identify the threshold, we adapt Tassion's RSW theory replacing the FKG inequality by a sprinkling procedure. Although some arguments are specific to the Gaussian setting, many steps are very general and we hope that our techniques may be adapted to analyse other models without FKG.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源