论文标题

在实时流媒体上下文中评估原子配对函数(PDF)数据的非负矩阵分解的验证

Validation of non-negative matrix factorization for assessment of atomic pair-distribution function (PDF) data in a real-time streaming context

论文作者

Liu, Chia-Hao, Wright, Christopher J., Gu, Ran, Bandi, Sasaank, Wustrow, Allison, Todd, Paul K., O'Nolan, Daniel, Beauvais, Michelle L., Neilson, James R., Chupas, Peter J., Chapman, Karena W., Billinge, Simon J. L.

论文摘要

我们验证使用矩阵分解以自动识别来自原子对分布函数(PDF)数据的相关组件。我们还提出了一个新开发的软件基础架构,用于分析以流方式到达的PDF数据。然后,我们应用两种矩阵分解技术,即主成分分析(PCA)和非负矩阵分解(NMF),以在原位实验的背景下研究模拟和实验数据集。

We validate the use of matrix factorization for the automatic identification of relevant components from atomic pair distribution function (PDF) data. We also present a newly developed software infrastructure for analyzing the PDF data arriving in streaming manner. We then apply two matrix factorization techniques, Principal Component Analysis (PCA) and Non-negative Matrix Factorization (NMF), to study simulated and experiment datasets in the context of in situ experiment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源