论文标题
知识图嵌入具有严重的卷积和残差学习
Knowledge Graph Embedding with Atrous Convolution and Residual Learning
论文作者
论文摘要
知识图嵌入是一项重要的任务,它将受益于许多下游应用程序。目前,基于深度神经网络的方法达到了最新的性能。但是,这些现有方法中的大多数都非常复杂,需要大量时间进行培训和推理。为了解决这个问题,我们提出了一种简单但有效的基于卷积的知识图嵌入方法。与现有的最新方法相比,我们的方法具有以下主要特征。首先,它通过使用强烈的卷积有效地增加了特征相互作用。其次,为了解决原始信息被遗忘的问题以及消失/爆炸梯度问题,它使用了剩余的学习方法。第三,它具有更简单的结构,但参数效率更高。我们在具有不同评估指标的六个基准数据集上评估我们的方法。广泛的实验表明,我们的模型非常有效。在这些不同的数据集上,它比在大多数评估指标上比较了最新方法的结果更好。可以在https://github.com/neukg/acre上找到我们模型的源代码。
Knowledge graph embedding is an important task and it will benefit lots of downstream applications. Currently, deep neural networks based methods achieve state-of-the-art performance. However, most of these existing methods are very complex and need much time for training and inference. To address this issue, we propose a simple but effective atrous convolution based knowledge graph embedding method. Compared with existing state-of-the-art methods, our method has following main characteristics. First, it effectively increases feature interactions by using atrous convolutions. Second, to address the original information forgotten issue and vanishing/exploding gradient issue, it uses the residual learning method. Third, it has simpler structure but much higher parameter efficiency. We evaluate our method on six benchmark datasets with different evaluation metrics. Extensive experiments show that our model is very effective. On these diverse datasets, it achieves better results than the compared state-of-the-art methods on most of evaluation metrics. The source codes of our model could be found at https://github.com/neukg/AcrE.