论文标题
与离散的Wasserstein培训中的自动驾驶中的重要性感知语义细分
Importance-Aware Semantic Segmentation in Self-Driving with Discrete Wasserstein Training
论文作者
论文摘要
语义分割(SS)是自动驾驶汽车和机器人技术的重要感知方式,将每个像素分类为预定的类别。广泛使用的跨熵(CE)基于损失的深网已经取得了重大进展W.R.T.平均交叉联盟(MIOU)。但是,交叉熵损失不能考虑自动驾驶系统中每个类的重要性。例如,图像中的行人比周围的建筑物在驾驶中做出决定时应该更重要,因此他们的分割结果有望尽可能准确。在本文中,我们建议通过配置其地面距离矩阵,将重要性感知的阶层间相关性纳入沃斯坦斯坦训练框架中。在特定任务中,可以在先验之后预先定义地面距离矩阵,而先前的重要性方法可以是特定情况。从优化的角度来看,我们还将接地度量扩展到线性,凸或凹的增加功能$ W.R.T. $预定的地面距离。我们以插头和游戏方式评估了带有不同骨架(塞格内特,ENET,FCN和DeepLab)的Camvid和CityScapes数据集的方法。在我们的扩展实验中,瓦斯坦的损失表明,在预定义的关键类别的安全驾驶中,分割表现出色。
Semantic segmentation (SS) is an important perception manner for self-driving cars and robotics, which classifies each pixel into a pre-determined class. The widely-used cross entropy (CE) loss-based deep networks has achieved significant progress w.r.t. the mean Intersection-over Union (mIoU). However, the cross entropy loss can not take the different importance of each class in an self-driving system into account. For example, pedestrians in the image should be much more important than the surrounding buildings when make a decisions in the driving, so their segmentation results are expected to be as accurate as possible. In this paper, we propose to incorporate the importance-aware inter-class correlation in a Wasserstein training framework by configuring its ground distance matrix. The ground distance matrix can be pre-defined following a priori in a specific task, and the previous importance-ignored methods can be the particular cases. From an optimization perspective, we also extend our ground metric to a linear, convex or concave increasing function $w.r.t.$ pre-defined ground distance. We evaluate our method on CamVid and Cityscapes datasets with different backbones (SegNet, ENet, FCN and Deeplab) in a plug and play fashion. In our extenssive experiments, Wasserstein loss demonstrates superior segmentation performance on the predefined critical classes for safe-driving.