论文标题
基于机器学习的晶格导热率的预测,用于使用原子信息的半身化合物的化合物
Machine-Learning-based Prediction of Lattice Thermal Conductivity for Half-Heusler Compounds using Atomic Information
论文作者
论文摘要
Half-Heusler化合物吸引了各个领域的注意力,作为热电学转化和自旋技术技术的候选材料。这是因为它具有各种电子结构,例如半金属,半导体和拓扑绝缘子。当将半赫斯勒化合物合并到设备中时,由于高晶体对称性,高晶格导热率的控制是设备的热管理器的挑战。晶格热导率预测的计算,这是控制设备的热管理的重要物理参数,需要计算成本是通常密度功能理论计算的几倍。因此,我们研究了仅根据各种半手化合物中密度功能理论计算计算的热导率的成分元素的原子信息,是否可以根据机器学习进行晶格的热导率预测。因此,我们构建了一个机器学习模型,该模型可以从仅原子半径的信息和半赫斯勒型晶体结构中每个位点的原子半径和原子质量的信息中预测晶格的热导率。应用我们的结果,可以立即预测未知半手化合物的晶格导热率。将来,可以实现新功能材料的低成本和短期开发,从而在寻找新型功能材料时取得突破。
The half-Heusler compound has drawn attention in a variety of fields as a candidate material for thermoelectric energy conversion and spintronics technology. This is because it has various electronic structures, such as semi-metals, semiconductors, and a topological insulator. When the half-Heusler compound is incorporated into the device, the control of high lattice thermal conductivity owing to high crystal symmetry is a challenge for the thermal manager of the device. The calculation for the prediction of lattice thermal conductivity, which is an important physical parameter for controlling the thermal management of the device, requires a calculation cost of several 100 times as much as the usual density functional theory calculation. Therefore, we examined whether lattice thermal conductivity prediction by machine learning was possible on the basis of only the atomic information of constituent elements for thermal conductivity calculated by the density functional theory calculation in various half-Heusler compounds. Consequently, we constructed a machine learning model, which can predict the lattice thermal conductivity with high accuracy from the information of only atomic radius and atomic mass of each site in the half-Heusler type crystal structure. Applying our results, the lattice thermal conductivity for an unknown half-Heusler compound can be immediately predicted. In the future, low-cost and short-time development of new functional materials can be realized, leading to breakthroughs in the search of novel functional materials.