论文标题
无线通信的分布式智能反射表面的性能分析
Performance Analysis of Distributed Intelligent Reflective Surfaces for Wireless Communications
论文作者
论文摘要
在本文中,介绍了分布式智能反射表面(IRSS)辅助通信系统的全面性能分析。首先,可以通过控制分布式IRS的相移来量化最佳的信噪比(SNR),可以通过直接和反射通道实现。接下来,该最佳SNR在统计上的特征是在Nakagamii-$ m $ vading中得出与确切概率密度函数(PDF)和累积分布函数(CDF)的紧密近似值。通过得出Kullback-Leibler Divergence研究了这种统计表征的准确性/紧密度。我们的PDF/CDF分析用于在封闭形式中的中断概率,可实现的速率和平均符号错误率(SER)来得出紧密的近似/边界。为了获得有用的见解,高SNR制度得出了渐近中断概率和平均SER。因此,可以量化可实现的多样性顺序和阵列的收益。我们的渐近性能分析表明,可以通过使用分布式的被动IRS来提高多样性顺序,而无需通过主动射频链产生额外的电磁波(EM)波。我们的渐近率分析表明,在大型反射元件状态下,下部和上部速率边界会融合到渐近极限。我们的分析通过蒙特卡洛模拟得到验证。我们提出了一组严格的数值结果,以研究所提出的系统模型的性能提高。我们的分析和数值结果表明,单输入单输出无线系统的性能可以通过回收由发射机通过分布式无源IRS反射产生的EM波来提高,以在接收器处启用建设性信号组合。
In this paper, a comprehensive performance analysis of a distributed intelligent reflective surfaces (IRSs)-aided communication system is presented. First, the optimal signal-to-noise ratio (SNR), which is attainable through the direct and reflected channels, is quantified by controlling the phase shifts of the distributed IRS. Next, this optimal SNR is statistically characterized by deriving tight approximations to the exact probability density function (PDF) and cumulative distribution function (CDF) for Nakagami-$m$ fading. The accuracy/tightness of this statistical characterization is investigated by deriving the Kullback-Leibler divergence. Our PDF/CDF analysis is used to derive tight approximations/bounds for the outage probability, achievable rate, and average symbol error rate (SER) in closed-form. To obtain useful insights, the asymptotic outage probability and average SER are derived for the high SNR regime. Thereby, the achievable diversity order and array gains are quantified. Our asymptotic performance analysis reveals that the diversity order can be boosted by using distributed passive IRSs without generating additional electromagnetic (EM) waves via active radio frequency chains. Our asymptotic rate analysis shows that the lower and upper rate bounds converge to an asymptotic limit in large reflective element regime. Our analysis is validated via Monte-Carlo simulations. We present a rigorous set of numerical results to investigate the performance gains of the proposed system model. Our analytical and numerical results reveal that the performance of single-input single-output wireless systems can be boosted by recycling the EM waves generated by a transmitter through distributed passive IRS reflections to enable constructive signal combining at a receiver.