论文标题

众包排名中算法不稳定性的起源

Origins of Algorithmic Instabilities in Crowdsourced Ranking

论文作者

Burghardt, Keith, Hogg, Tad, D'Souza, Raissa M., Lerman, Kristina, Posfai, Marton

论文摘要

众包系统汇总了许多人的决策,以帮助用户快速识别高质量的选择,例如问题的最佳答案或有趣的新闻报道。众包中的一个长期存在的问题是,期权质量和人类判断力如何相互作用以影响集体成果,例如期权的普及。我们通过进行对照实验来解决这一限制,其中受试者在两个排名的选项之间进行选择,它们的质量可以独立变化。我们使用这些数据来构建一个模型,该模型可以量化判断力启发式方法和选项质量在两个选项之间的决定时如何结合使用。该模型揭示了受欢迎程度排名可能不稳定:除非两个选项之间的质量差异足够高,否则不能保证最终将更高质量的选项排在最高。为了纠正这种不稳定,我们创建了一种算法,该算法解释了判断力的启发式方法,以推断出最佳选择并将其排名。如果数据与模型匹配,则保证该算法将是最佳的。但是,当数据与模型不匹配时,模拟表明,实际上,该算法的性能更好或至少以及基于受欢迎程度的基于恢复性的任何两项问题的排名。我们的工作表明,依赖用户行为数学模型推断的算法可以大大改善众包系统的结果。

Crowdsourcing systems aggregate decisions of many people to help users quickly identify high-quality options, such as the best answers to questions or interesting news stories. A long-standing issue in crowdsourcing is how option quality and human judgement heuristics interact to affect collective outcomes, such as the perceived popularity of options. We address this limitation by conducting a controlled experiment where subjects choose between two ranked options whose quality can be independently varied. We use this data to construct a model that quantifies how judgement heuristics and option quality combine when deciding between two options. The model reveals popularity-ranking can be unstable: unless the quality difference between the two options is sufficiently high, the higher quality option is not guaranteed to be eventually ranked on top. To rectify this instability, we create an algorithm that accounts for judgement heuristics to infer the best option and rank it first. This algorithm is guaranteed to be optimal if data matches the model. When the data does not match the model, however, simulations show that in practice this algorithm performs better or at least as well as popularity-based and recency-based ranking for any two-choice question. Our work suggests that algorithms relying on inference of mathematical models of user behavior can substantially improve outcomes in crowdsourcing systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源